William Tapper
University of Southampton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William Tapper.
Nature Genetics | 2010
Clare Turnbull; Shahana Ahmed; Jonathan Morrison; David Pernet; Anthony Renwick; Mel Maranian; Sheila Seal; Maya Ghoussaini; Sarah Hines; Catherine S. Healey; Deborah Hughes; Margaret Warren-Perry; William Tapper; Diana Eccles; D. Gareth Evans; Maartje J. Hooning; Mieke Schutte; Ans van den Ouweland; Richard S. Houlston; Gillian Ross; Cordelia Langford; Paul Pharoah; Mike Stratton; Alison M. Dunning; Nazneen Rahman; Douglas F. Easton
Breast cancer is the most common cancer in women in developed countries. To identify common breast cancer susceptibility alleles, we conducted a genome-wide association study in which 582,886 SNPs were genotyped in 3,659 cases with a family history of the disease and 4,897 controls. Promising associations were evaluated in a second stage, comprising 12,576 cases and 12,223 controls. We identified five new susceptibility loci, on chromosomes 9, 10 and 11 (P = 4.6 × 10−7 to P = 3.2 × 10−15). We also identified SNPs in the 6q25.1 (rs3757318, P = 2.9 × 10−6), 8q24 (rs1562430, P = 5.8 × 10−7) and LSP1 (rs909116, P = 7.3 × 10−7) regions that showed more significant association with risk than those reported previously. Previously identified breast cancer susceptibility loci were also found to show larger effect sizes in this study of familial breast cancer cases than in previous population-based studies, consistent with polygenic susceptibility to the disease.
Journal of Clinical Oncology | 2015
Fergus J. Couch; Steven N. Hart; Priyanka Sharma; Amanda Ewart Toland; Xianshu Wang; Penelope Miron; Janet E. Olson; Andrew K. Godwin; V. Shane Pankratz; Curtis Olswold; Seth W. Slettedahl; Emily Hallberg; Lucia Guidugli; Jaime Davila; Matthias W. Beckmann; Wolfgang Janni; Brigitte Rack; Arif B. Ekici; Dennis J. Slamon; Irene Konstantopoulou; Florentia Fostira; Athanassios Vratimos; George Fountzilas; Liisa M. Pelttari; William Tapper; Lorraine Durcan; Simon S. Cross; Robert Pilarski; Charles L. Shapiro; Jennifer R. Klemp
PURPOSE Recent advances in DNA sequencing have led to the development of breast cancer susceptibility gene panels for germline genetic testing of patients. We assessed the frequency of mutations in 17 predisposition genes, including BRCA1 and BRCA2, in a large cohort of patients with triple-negative breast cancer (TNBC) unselected for family history of breast or ovarian cancer to determine the utility of germline genetic testing for those with TNBC. PATIENTS AND METHODS Patients with TNBC (N = 1,824) unselected for family history of breast or ovarian cancer were recruited through 12 studies, and germline DNA was sequenced to identify mutations. RESULTS Deleterious mutations were identified in 14.6% of all patients. Of these, 11.2% had mutations in the BRCA1 (8.5%) and BRCA2 (2.7%) genes. Deleterious mutations in 15 other predisposition genes were detected in 3.7% of patients, with the majority observed in genes involved in homologous recombination, including PALB2 (1.2%) and BARD1, RAD51D, RAD51C, and BRIP1 (0.3% to 0.5%). Patients with TNBC with mutations were diagnosed at an earlier age (P < .001) and had higher-grade tumors (P = .01) than those without mutations. CONCLUSION Deleterious mutations in predisposition genes are present at high frequency in patients with TNBC unselected for family history of cancer. Mutation prevalence estimates suggest that patients with TNBC, regardless of age at diagnosis or family history of cancer, should be considered for germline genetic testing of BRCA1 and BRCA2. Although mutations in other predisposition genes are observed among patients with TNBC, better cancer risk estimates are needed before these mutations are used for clinical risk assessment in relatives.
Nature Genetics | 2013
Rocco Piazza; Simona Valletta; Nils Winkelmann; Sara Redaelli; Roberta Spinelli; Alessandra Pirola; Laura Antolini; Luca Mologni; Carla Donadoni; Elli Papaemmanuil; Susanne Schnittger; Dong Wook Kim; Jacqueline Boultwood; Fabio Rossi; Giuseppe Gaipa; Greta De Martini; Paola Francia di Celle; Hyun Gyung Jang; Valeria Fantin; Graham R. Bignell; Vera Magistroni; Torsten Haferlach; Enrico Maria Pogliani; Peter J. Campbell; Andrew Chase; William Tapper; Nicholas C.P. Cross; Carlo Gambacorti-Passerini
Atypical chronic myeloid leukemia (aCML) shares clinical and laboratory features with CML, but it lacks the BCR-ABL1 fusion. We performed exome sequencing of eight aCMLs and identified somatic alterations of SETBP1 (encoding a p.Gly870Ser alteration) in two cases. Targeted resequencing of 70 aCMLs, 574 diverse hematological malignancies and 344 cancer cell lines identified SETBP1 mutations in 24 cases, including 17 of 70 aCMLs (24.3%; 95% confidence interval (CI) = 16–35%). Most mutations (92%) were located between codons 858 and 871 and were identical to changes seen in individuals with Schinzel-Giedion syndrome. Individuals with mutations had higher white blood cell counts (P = 0.008) and worse prognosis (P = 0.01). The p.Gly870Ser alteration abrogated a site for ubiquitination, and cells exogenously expressing this mutant exhibited higher amounts of SETBP1 and SET protein, lower PP2A activity and higher proliferation rates relative to those expressing the wild-type protein. In summary, mutated SETBP1 represents a newly discovered oncogene present in aCML and closely related diseases.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Nikolas Maniatis; Andrew Collins; C.-F. Xu; L. C. McCarthy; D. R. Hewett; William Tapper; Sarah Ennis; Xiayi Ke; N. E. Morton
Linkage disequilibrium (LD) provides information about positional cloning, linkage, and evolution that cannot be inferred from other evidence, even when a correct sequence and a linkage map based on more than a handful of families become available. We present theory to construct an LD map for which distances are additive and population-specific maps are expected to be approximately proportional. For this purpose, there is only a modest difference in relative efficiency of haplotypes and diplotypes: resolving the latter into 2-locus haplotypes has significant cost or error and increases information by about 50%. LD maps for a cold spot in 19p13.3 and a more typical region in 3q21 are optimized by interval estimates. For a random sample and trustworthy map the value of LD at large distance can be predicted reliably from information over a small distance and does not depend on the evolutionary variance unless the sample size approaches the population size. Values of the association probability that can be distinguished from the value at large distance are determined not by population size but by time since a critical bottleneck. In these examples, omission of markers with significant Hardy–Weinberg disequilibrium does not improve the map, and widely discrepant draft sequences have similar estimates of the genetic parameters. The LD cold spot in 19p13.3 gives an unusually high estimate of time, supporting an argument that this relationship is general. As predicted for a region with ancient haplotypes or uniformly high recombination, there is no clear evidence of LD clustering. On the contrary, the 3q21 region is resolved into alternating blocks of stable and decreasing LD, as expected from crossover clustering. Construction of a genomewide LD map requires data not yet available, which may be complemented but not replaced by a catalog of haplotypes.
Leukemia | 2012
Kevin Boyd; Fiona M. Ross; Laura Chiecchio; Gianpaolo Dagrada; Zoe J. Konn; William Tapper; Brian A. Walker; Christopher P. Wardell; Walter Gregory; Alexander J. Szubert; Se Bell; J. A. Child; Graham Jackson; Faith E. Davies; Gareth J. Morgan
The association of genetic lesions detected by fluorescence in situ hybridization (FISH) with survival was analyzed in 1069 patients with newly presenting myeloma treated in the Medical Research Council Myeloma IX trial, with the aim of identifying patients associated with the worst prognosis. A comprehensive FISH panel was performed, and the lesions associated with short progression-free survival and overall survival (OS) in multivariate analysis were +1q21, del(17p13) and an adverse immunoglobulin heavy chain gene (IGH) translocation group incorporating t(4;14), t(14;16) and t(14;20). These lesions frequently co-segregated, and there was an association between the accumulation of these adverse FISH lesions and a progressive impairment of survival. This observation was used to define a series of risk groups based on number of adverse lesions. Taking this approach, we defined a favorable risk group by the absence of adverse genetic lesions, an intermediate group with one adverse lesion and a high-risk group defined by the co-segregation of >1 adverse lesion. This genetic grouping was independent of the International Staging System (ISS) and so was integrated with the ISS to identify an ultra-high-risk group defined by ISS II or III and >1 adverse lesion. This group constituted 13.8% of patients and was associated with a median OS of 19.4 months.
Journal of Molecular Medicine | 2003
Angharad R. Morgan; Baiping Zhang; William Tapper; Andrew Collins; Shu Ye
Matrix metalloproteinase-9 (MMP-9) plays an important role in the pathogenesis of atherosclerosis, the pathology underlying the majority of coronary artery disease. We previously identified several polymorphisms in the gene encoding MMP-9. In this study we tested the hypothesis that variation in the matrix metalloproteinase-9 gene influences the development of atherosclerosis. Three common polymorphisms, i.e. −1562C>T, R+279Q and +6C>T, were analysed in 1510 white subjects undergoing coronary angiography. Analyses of individual polymorphisms showed that the frequencies of the C/T and T/T genotypes of the −1562C>T polymorphism were significantly higher in patients with coronary stenosis than in those with a normal angiogram. Logistic regression analyses indicated that individuals carrying the −1562T allele had an approx. 1.5-fold higher risk of developing coronary stenosis (OR 1.49, 95% CI 1.039–2.144), which was equivalent to an over 30% reduction in risk of coronary stenosis in individuals not carrying this allele (OR 0.670, 95% CI 0.467–0.963). The three polymorphisms studied were found to be in strong linkage disequilibrium. Haplotype analyses showed that the C-G-C haplotype (−1562C, +279Q and +6C) was associated with a protective effect against atherosclerosis. Individuals carrying this haplotype were at reduced risk of developing coronary stenosis (OR 0.695, 95% CI 0.530.92). Furthermore, the C-G-C haplotype was associated with less severe coronary atherosclerosis, i.e. carriers of this haplotype were at a lower risk of having coronary stenosis in more than one coronary artery (OR 0.796, 95% CI 0.640.99). These data, together with the previous finding that the −1562T allele has a higher transcriptional activity than the −1562C allele, support the notion that genetic variation with an effect on MMP-9 expression influences the development and progression of atherosclerosis.
Clinical Cancer Research | 2011
Kevin Boyd; Fiona M. Ross; Brian A. Walker; Christopher P. Wardell; William Tapper; Laura Chiecchio; Gian Paolo Dagrada; Zoe J. Konn; Walter Gregory; Graham Jackson; J. Anthony Child; Faith E. Davies; Gareth J. Morgan
Purpose: Regions on 1p with recurrent deletions in presenting myeloma patients were examined with the purpose of defining the deletions and assessing their survival impact. Experimental Design: Gene mapping, gene expression, FISH, and mutation analyses were conducted on patient samples from the MRC Myeloma IX trial and correlated with clinical outcome data. Results: 1p32.3 was deleted in 11% of cases, and deletion was strongly associated with impaired overall survival (OS) in patients treated with autologous stem cell transplant (ASCT). In patients treated less intensively, del(1)(p32.3) was not associated with adverse progression-free survival (PFS) or OS. The target of homozygous deletions was CDKN2C, however its role in the adverse outcome of cases with hemizygous deletion was less certain. 1p22.1-21.2 was the most frequently deleted region and contained the candidate genes MTF2 and TMED5. No mutations were identified in these genes. 1p12 was deleted in 19% of cases, and deletion was associated with impaired OS in univariate analysis. The target of homozygous deletion was FAM46C, which was mutated in 3.4% of cases. When cases with FAM46C deletion or mutation were considered together, they were strongly associated with impaired OS in the intensive treatment setting. Conclusion: Deletion of 1p32.3 and 1p12 was associated with impaired OS in myeloma patients receiving ASCT. FAM46C was identified as a gene with potential pathogenic and prognostic significance based on the occurrence of recurrent homozygous deletions and mutations. Clin Cancer Res; 17(24); 7776–84. ©2011 AACR.
Gut | 2013
Katja Christodoulou; Anthony E Wiskin; Jane Gibson; William Tapper; Claire Willis; Nadeem A. Afzal; Rosanna Upstill-Goddard; John W. Holloway; Michael A. Simpson; R. Mark Beattie; Andrew Collins; Sarah Ennis
Background Multiple genes have been implicated by association studies in altering inflammatory bowel disease (IBD) predisposition. Paediatric patients often manifest more extensive disease and a particularly severe disease course. It is likely that genetic predisposition plays a more substantial role in this group. Objective To identify the spectrum of rare and novel variation in known IBD susceptibility genes using exome sequencing analysis in eight individual cases of childhood onset severe disease. Design DNA samples from the eight patients underwent targeted exome capture and sequencing. Data were processed through an analytical pipeline to align sequence reads, conduct quality checks, and identify and annotate variants where patient sequence differed from the reference sequence. For each patient, the entire complement of rare variation within strongly associated candidate genes was catalogued. Results Across the panel of 169 known IBD susceptibility genes, approximately 300 variants in 104 genes were found. Excluding splicing and HLA-class variants, 58 variants across 39 of these genes were classified as rare, with an alternative allele frequency of <5%, of which 17 were novel. Only two patients with early onset Crohns disease exhibited rare deleterious variations within NOD2: the previously described R702W variant was the sole NOD2 variant in one patient, while the second patient also carried the L1007 frameshift insertion. Both patients harboured other potentially damaging mutations in the GSDMB, ERAP2 and SEC16A genes. The two patients severely affected with ulcerative colitis exhibited a distinct profile: both carried potentially detrimental variation in the BACH2 and IL10 genes not seen in other patients. Conclusion For each of the eight individuals studied, all non-synonymous, truncating and frameshift mutations across all known IBD genes were identified. A unique profile of rare and potentially damaging variants was evident for each patient with this complex disease.
Cancer Research | 2011
Kristen N. Stevens; Celine M. Vachon; Adam Lee; Susan L. Slager; Timothy G. Lesnick; Curtis Olswold; Peter A. Fasching; Penelope Miron; Diana Eccles; Jane Carpenter; Andrew K. Godwin; Christine B. Ambrosone; Robert Winqvist; Hiltrud Brauch; Marjanka K. Schmidt; Angela Cox; Simon S. Cross; Elinor Sawyer; Arndt Hartmann; Matthias W. Beckmann; Rud̈iger Schulz-Wendtland; Arif B. Ekici; William Tapper; Susan M. Gerty; Lorraine Durcan; Nikki Graham; Rebecca Hein; Stephan Nickels; Dieter Flesch-Janys; Judith Heinz
Triple-negative breast cancers are an aggressive subtype of breast cancer with poor survival, but there remains little known about the etiologic factors that promote its initiation and development. Commonly inherited breast cancer risk factors identified through genome-wide association studies display heterogeneity of effect among breast cancer subtypes as defined by the status of estrogen and progesterone receptors. In the Triple Negative Breast Cancer Consortium (TNBCC), 22 common breast cancer susceptibility variants were investigated in 2,980 Caucasian women with triple-negative breast cancer and 4,978 healthy controls. We identified six single-nucleotide polymorphisms, including rs2046210 (ESR1), rs12662670 (ESR1), rs3803662 (TOX3), rs999737 (RAD51L1), rs8170 (19p13.1), and rs8100241 (19p13.1), significantly associated with the risk of triple-negative breast cancer. Together, our results provide convincing evidence of genetic susceptibility for triple-negative breast cancer.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Weilhua Zhang; Andrew Collins; Nikolas Maniatis; William Tapper; N. E. Morton
A linkage disequilibrium map is expressed in linkage disequilibrium (LD) units (LDU) discriminating blocks of conserved LD that have additive distances and locations monotonic with physical (kb) and genetic (cM) maps. There is remarkable agreement between LDU steps and sites of meiotic recombination in the one body of data informative for crossing over, and good agreement with another method that defines blocks without assigning an LD location to each marker. The map may be constructed from haplotypes or diplotypes, and efficiency estimated from the empirical variance of LD is substantially greater for the ρ metric based on evolutionary theory than for the absolute correlation r, and for the LD map compared with its physical counterpart. The empirical variance is nearly three times as great for the worst alternative (r and kb map) as for the most efficient approach (ρ and LD map). According to the empirical variances, blocks are best defined by zero distance between included markers. Because block size is algorithm-dependent and highly variable, the number of markers required for positional cloning is minimized by uniform spacing on the LD map, which is estimated to have ≈1 LDU per locus, but with much variation among regions. No alternative representation of linkage disequilibrium (some of which are loosely called maps) has these properties, suggesting that LD maps are optimal for positional cloning of genes determining disease susceptibility.