Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Dentai is active.

Publication


Featured researches published by Andrew Dentai.


IEEE Journal of Selected Topics in Quantum Electronics | 2005

Large-scale photonic integrated circuits

R. Nagarajan; Charles H. Joyner; R. Schneider; Jeffrey Bostak; T. Butrie; Andrew Dentai; Vincent G. Dominic; P. Evans; Masaki Kato; M. Kauffman; Damien Lambert; S.K. Mathis; Atul Mathur; R.H. Miles; Matthew L. Mitchell; Mark J. Missey; Sanjeev Murthy; Alan C. Nilsson; Frank H. Peters; S.C. Pennypacker; J. Pleumeekers; Randal A. Salvatore; R. Schlenker; Robert B. Taylor; Huan-Shang Tsai; M.F. Van Leeuwen; Jonas Webjorn; Mehrdad Ziari; Drew D. Perkins; J. Singh

We present an overview of Infineras current generation of 100 Gb/s transmitter and receiver PICs as well as results from the next-generation 500 Gb/s PM-QPSK PICs.


IEEE Photonics Technology Letters | 2002

Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength

Jacco Pleumeekers; M. Kauer; K. Dreyer; C.A. Burrus; Andrew Dentai; Steve Shunk; Jürg Leuthold; Charles H. Joyner

By using optical injection near the transparency wavelength of semiconductor optical amplifiers, we show experimentally that both the saturation output power and the gain recovery can be greatly improved. By injecting 80 mW of pump power, we observe a 3-dB increase in saturation output power. For 73 mW of pump power, we find a reduction in gain recovery time from over 200 ps down to below 40 ps, while maintaining 14 dB of fiber-to-fiber gain at 1555-nm wavelength.


IEEE Journal of Selected Topics in Quantum Electronics | 2010

InP Photonic Integrated Circuits

Radhakrishnan Nagarajan; Masaki Kato; J. Pleumeekers; Peter Evans; Scott Corzine; Sheila Hurtt; Andrew Dentai; Sanjeev Murthy; Mark J. Missey; Ranjani Muthiah; Randal A. Salvatore; Charles H. Joyner; Richard P. Schneider; Mehrdad Ziari; Fred A. Kish; David F. Welch

InP is an ideal integration platform for optical generation, switching, and detection components operating in the range of 1.3-1.6 m wavelength, which is preferred for data transmission in the most prevalent silica-based optical fiber. We review the current state of the art in advanced InP photonic ICs.


IEEE Journal of Selected Topics in Quantum Electronics | 2011

Current Status of Large-Scale InP Photonic Integrated Circuits

F. Kish; D. Welch; R. Nagarajan; J. Pleumeekers; Vikrant Lal; Mehrdad Ziari; Alan C. Nilsson; Masaki Kato; Sanjeev Murthy; P. Evans; Scott Corzine; Matthew L. Mitchell; Parmijit Samra; Mark J. Missey; Scott Demars; R. Schneider; M. Reffle; T. Butrie; Jeffrey T. Rahn; M.F. Van Leeuwen; J. W. Stewart; Damien Lambert; Ranjani Muthiah; Huan-Shang Tsai; Jeffrey Bostak; Andrew Dentai; Kuang-Tsan Wu; Han Sun; Don Pavinski; Jiaming Zhang

In this paper, the current state of the art for large-scale InP photonic integrated circuits (PICs) is reviewed with a focus on the devices and technologies that are driving the commercial scaling of highly integrated devices. Specifically, the performance, reliability, and manufacturability of commercial 100-Gb/s dense wavelength-division-multiplexed transmitter and receiver PICs are reviewed as well as next- and future-generation devices (500 Gb/s and beyond). The large-scale PIC enables significant reductions in cost, packaging complexity, size, fiber coupling, and power consumption which have enabled benefits at the component and system level.


IEEE Photonics Technology Letters | 2010

Large-Scale InP Transmitter PICs for PM-DQPSK Fiber Transmission Systems

Scott Corzine; Peter Evans; M. Fisher; John Gheorma; Masaki Kato; Vincent G. Dominic; Parmijit Samra; Alan C. Nilsson; Jeff Rahn; Ilya Lyubomirsky; Andrew Dentai; P. Studenkov; Mark J. Missey; Damien Lambert; Augi Spannagel; Ranjani Muthiah; Randal A. Salvatore; Sanjeev Murthy; E. Strzelecka; J. Pleumeekers; Arnold Chen; Richard P. Schneider; Radhakrishnan Nagarajan; Mehrdad Ziari; J. Stewart; Charles H. Joyner; Fred A. Kish; David F. Welch

We report here the first demonstration of a large-scale monolithically integrated InP-based 10-channel 45.6-Gb/s per channel transmitter photonic integrated circuit employing polarization-multiplexed differential quadrature phase-shift keying modulation format.


Journal of Optical Networking | 2007

Large-scale photonic integrated circuits for long-haul transmission and switching

Radhakrishnan Nagarajan; Masaki Kato; Jacco Pleumeekers; Peter Evans; Damien Lambert; Arnold Chen; Vince Dominic; Atul Mathur; Prashant Chavarkar; Mark J. Missey; Andrew Dentai; Sheila Hurtt; J. Back; Ranjani Muthiah; Sanjeev Murthy; Randal A. Salvatore; Charles H. Joyner; Jon Rossi; Richard P. Schneider; Mehrdad Ziari; Huan-Shang Tsai; Jeffrey Bostak; Michael Kauffman; S.C. Pennypacker; T. Butrie; Michael Reffle; Dave Mehuys; Matthew L. Mitchell; Alan C. Nilsson; Stephen G. Grubb

Feature Issue on Nanoscale Integrated Photonics for Optical Networks Dense wavelength division multiplexed (DWDM) large-scale, single-chip transmitter and receiver photonic integrated circuits (PICs), each capable of operating at 100 Gbits/s, have been deployed in the field since the end of 2004. These highly integrated InP chips have significantly changed the economics of long-haul optical transport networks. First, a review of the ten-channel, 100 Gbits/s PIC is presented. Then two extensions of the technology are demonstrated; first is wide temperature, coolerless operation of the 100 Gbits/s PIC, and second is a single integrated chip with 40 channels operating at 40 Gbits/s, capable of an aggregate data rate of 1.6 Tbits/s.


optical fiber communication conference | 2011

10 Channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit

Radhakrishnan Nagarajan; Damien Lambert; Masaki Kato; Vikrant Lal; Gilad Goldfarb; Jeff Rahn; Matthias Kuntz; Jacco Pleumeekers; Andrew Dentai; Huan-Shang Tsai; Roman Malendevich; Mark J. Missey; Kuang-Tsan Wu; Han Sun; John D. McNicol; Jie Tang; Jiaming Zhang; Tim Butrie; Alan C. Nilsson; M. Reffle; Fred A. Kish; D. O. Welch

A 10 channel, dual polarization, monolithically integrated, coherent QPSK receiver on InP operating at 100Gbit/s per channel is demonstrated.


optical fiber communication conference | 2011

Multi-channel coherent PM-QPSK InP transmitter photonic integrated circuit (PIC) operating at 112 Gb/s per wavelength

P. Evans; M. Fisher; Roman Malendevich; Adam James; P. Studenkov; Gilad Goldfarb; T. Vallaitis; Masaki Kato; P. Samra; Scott Corzine; E. Strzelecka; Randal A. Salvatore; F. Sedgwick; Matthias Kuntz; Vikrant Lal; Damien Lambert; Andrew Dentai; Don Pavinski; Jiaming Zhang; Babak Behnia; Jeffrey Bostak; Vincent G. Dominic; Alan C. Nilsson; Brian Taylor; Jeffrey T. Rahn; Steve Sanders; Han Sun; Kuang-Tsan Wu; J. Pleumeekers; Ranjani Muthiah

A 10-wavelength, polarization-multiplexed, monolithically integrated InP transmitter PIC is demonstrated for the first time to operate at 112 Gb/s per wavelength with a coherent receiver PIC.


Journal of Lightwave Technology | 2011

10 Channel, 45.6 Gb/s per Channel, Polarization-Multiplexed DQPSK, InP Receiver Photonic Integrated Circuit

Radhakrishnan Nagarajan; Jeffrey T. Rahn; Masaki Kato; J. Pleumeekers; Damien Lambert; Vikrant Lal; Huan-Shang Tsai; Alan C. Nilsson; Andrew Dentai; Matthias Kuntz; Roman Malendevich; Jie Tang; Jiaming Zhang; T. Butrie; Maura Raburn; Brent E. Little; Wei Chen; Gilad Goldfarb; Vince Dominic; Brian Taylor; Michael Reffle; Fred A. Kish; David F. Welch

We demonstrate a 10 wavelength, 200 GHz spaced, monolithically integrated, polarization-multiplexed, InP differential quadrature phase shift keying receiver operating at 45.6 Gb/s per wavelength. The receiver is based on a novel technique for polarization demodulation and phase tracking that does not require any external components.


Semiconductor Science and Technology | 2012

Terabit/s class InP photonic integrated circuits

Radhakrishnan Nagarajan; Masaki Kato; Damien Lambert; Peter Evans; Scott W. Corzine; Vikrant Lal; Jeffrey T. Rahn; Alan C. Nilsson; M. Fisher; Matthias Kuntz; Jacco Pleumeekers; Andrew Dentai; Huan-Shang Tsai; David J. Krause; Han Sun; Kuang-Tsan Wu; Mehrdad Ziari; Tim Butrie; M. Reffle; Matthew L. Mitchell; Fred A. Kish; D. O. Welch

In this paper, we review recent developments in the area of terabit/s?class monolithically integrated, transmitter and receiver photonic integrated circuits for the implementation of coherent, polarization-multiplexed, quadrature phase shift keying and higher order modulation formats.

Collaboration


Dive into the Andrew Dentai's collaboration.

Researchain Logo
Decentralizing Knowledge