Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanjeev Murthy is active.

Publication


Featured researches published by Sanjeev Murthy.


IEEE Journal of Selected Topics in Quantum Electronics | 2005

Large-scale photonic integrated circuits

R. Nagarajan; Charles H. Joyner; R. Schneider; Jeffrey Bostak; T. Butrie; Andrew Dentai; Vincent G. Dominic; P. Evans; Masaki Kato; M. Kauffman; Damien Lambert; S.K. Mathis; Atul Mathur; R.H. Miles; Matthew L. Mitchell; Mark J. Missey; Sanjeev Murthy; Alan C. Nilsson; Frank H. Peters; S.C. Pennypacker; J. Pleumeekers; Randal A. Salvatore; R. Schlenker; Robert B. Taylor; Huan-Shang Tsai; M.F. Van Leeuwen; Jonas Webjorn; Mehrdad Ziari; Drew D. Perkins; J. Singh

We present an overview of Infineras current generation of 100 Gb/s transmitter and receiver PICs as well as results from the next-generation 500 Gb/s PM-QPSK PICs.


IEEE Journal of Selected Topics in Quantum Electronics | 2010

InP Photonic Integrated Circuits

Radhakrishnan Nagarajan; Masaki Kato; J. Pleumeekers; Peter Evans; Scott Corzine; Sheila Hurtt; Andrew Dentai; Sanjeev Murthy; Mark J. Missey; Ranjani Muthiah; Randal A. Salvatore; Charles H. Joyner; Richard P. Schneider; Mehrdad Ziari; Fred A. Kish; David F. Welch

InP is an ideal integration platform for optical generation, switching, and detection components operating in the range of 1.3-1.6 m wavelength, which is preferred for data transmission in the most prevalent silica-based optical fiber. We review the current state of the art in advanced InP photonic ICs.


IEEE Journal of Selected Topics in Quantum Electronics | 2011

Current Status of Large-Scale InP Photonic Integrated Circuits

F. Kish; D. Welch; R. Nagarajan; J. Pleumeekers; Vikrant Lal; Mehrdad Ziari; Alan C. Nilsson; Masaki Kato; Sanjeev Murthy; P. Evans; Scott Corzine; Matthew L. Mitchell; Parmijit Samra; Mark J. Missey; Scott Demars; R. Schneider; M. Reffle; T. Butrie; Jeffrey T. Rahn; M.F. Van Leeuwen; J. W. Stewart; Damien Lambert; Ranjani Muthiah; Huan-Shang Tsai; Jeffrey Bostak; Andrew Dentai; Kuang-Tsan Wu; Han Sun; Don Pavinski; Jiaming Zhang

In this paper, the current state of the art for large-scale InP photonic integrated circuits (PICs) is reviewed with a focus on the devices and technologies that are driving the commercial scaling of highly integrated devices. Specifically, the performance, reliability, and manufacturability of commercial 100-Gb/s dense wavelength-division-multiplexed transmitter and receiver PICs are reviewed as well as next- and future-generation devices (500 Gb/s and beyond). The large-scale PIC enables significant reductions in cost, packaging complexity, size, fiber coupling, and power consumption which have enabled benefits at the component and system level.


IEEE Photonics Technology Letters | 2010

Large-Scale InP Transmitter PICs for PM-DQPSK Fiber Transmission Systems

Scott Corzine; Peter Evans; M. Fisher; John Gheorma; Masaki Kato; Vincent G. Dominic; Parmijit Samra; Alan C. Nilsson; Jeff Rahn; Ilya Lyubomirsky; Andrew Dentai; P. Studenkov; Mark J. Missey; Damien Lambert; Augi Spannagel; Ranjani Muthiah; Randal A. Salvatore; Sanjeev Murthy; E. Strzelecka; J. Pleumeekers; Arnold Chen; Richard P. Schneider; Radhakrishnan Nagarajan; Mehrdad Ziari; J. Stewart; Charles H. Joyner; Fred A. Kish; David F. Welch

We report here the first demonstration of a large-scale monolithically integrated InP-based 10-channel 45.6-Gb/s per channel transmitter photonic integrated circuit employing polarization-multiplexed differential quadrature phase-shift keying modulation format.


Journal of Optical Networking | 2007

Large-scale photonic integrated circuits for long-haul transmission and switching

Radhakrishnan Nagarajan; Masaki Kato; Jacco Pleumeekers; Peter Evans; Damien Lambert; Arnold Chen; Vince Dominic; Atul Mathur; Prashant Chavarkar; Mark J. Missey; Andrew Dentai; Sheila Hurtt; J. Back; Ranjani Muthiah; Sanjeev Murthy; Randal A. Salvatore; Charles H. Joyner; Jon Rossi; Richard P. Schneider; Mehrdad Ziari; Huan-Shang Tsai; Jeffrey Bostak; Michael Kauffman; S.C. Pennypacker; T. Butrie; Michael Reffle; Dave Mehuys; Matthew L. Mitchell; Alan C. Nilsson; Stephen G. Grubb

Feature Issue on Nanoscale Integrated Photonics for Optical Networks Dense wavelength division multiplexed (DWDM) large-scale, single-chip transmitter and receiver photonic integrated circuits (PICs), each capable of operating at 100 Gbits/s, have been deployed in the field since the end of 2004. These highly integrated InP chips have significantly changed the economics of long-haul optical transport networks. First, a review of the ten-channel, 100 Gbits/s PIC is presented. Then two extensions of the technology are demonstrated; first is wide temperature, coolerless operation of the 100 Gbits/s PIC, and second is a single integrated chip with 40 channels operating at 40 Gbits/s, capable of an aggregate data rate of 1.6 Tbits/s.


Proceedings of the IEEE | 2013

From Visible Light-Emitting Diodes to Large-Scale III–V Photonic Integrated Circuits

Fred A. Kish; Radhakrishnan Nagarajan; David F. Welch; Peter Evans; Jon Rossi; J. Pleumeekers; Andrew Dentai; Masaki Kato; Scott Corzine; Ranjani Muthiah; Mehrdad Ziari; Richard P. Schneider; M. Reffle; Tim Butrie; Damien Lambert; Mark J. Missey; Vikrant Lal; M. Fisher; Sanjeev Murthy; Randal A. Salvatore; Scott Demars; Adam James; C. Joyner

The discovery of the visible light-emitting diode (LED) 50 years ago by Holonyak and Bevacqua and the associated demonstration of the viability of the III-V semiconductor alloy created a foundational basis for the field of optoelectronics. Key advances which enabled the progression from the first visible LED to todays III-V photonic integrated circuits (PICs) are described. Furthermore, the current state-of-the-art 500-Gb/s and 1-Tb/s large-scale InP transmitter and receiver PICs and their essential role in the optical communications networks are reviewed.


optical fiber communication conference | 2008

Large-Scale Photonic Integrated Circuit Transmitters with Monolithically Integrated Semiconductor Optical Amplifiers

Sanjeev Murthy; Masaki Kato; Radhakrishnan Nagarajan; Mark J. Missey; Vince Dominic; Vikrant Lai; Brian Taylor; Jacco Pleumeekers; Jianping Zhang; Peter Evans; Mehrdad Ziari; Ranjani Muthiah; Randal A. Salvatore; Huan-Shang Tsai; Alan Nilson; Don Pavinski; P. Studenkov; Shashank Agashe; Andrew Dentai; Damien Lambert; Jeffrey Bostak; J. Stewart; Charles H. Joyner; Jon Rossi; Richard P. Schneider; M. Reffle; Fred A. Kish; D. O. Welch

We have successfully demonstrated large-scale photonic integrated circuit (LS-PIC) transmitters with monolithically integrated semiconductor optical amplifiers. Data is presented for for 10 channel devices operating at 10 and 40 Gb/sec.


lasers and electro optics society meeting | 2005

Large-scale DWDM photonic integrated circuits: a manufacturable and scalable integration platform

Charles H. Joyner; J. Pleumeekers; Atul Mathur; P. Evans; Damien Lambert; Sanjeev Murthy; S.K. Mathis; Frank H. Peters; J. Baeck; Mark J. Missey; Andrew Dentai; Randal A. Salvatore; R. Schneider; Mehrdad Ziari; Masaki Kato; R. Nagarajan; Jeffrey Bostak; T. Butrie; Vincent G. Dominic; M. Kauffman; R.H. Miles; Matthew L. Mitchell; Alan C. Nilsson; S.C. Pennypacker; R. Schlenker; Robert B. Taylor; Huan-Shang Tsai; M.F. Van Leeuwen; Jonas Webjorn; Drew D. Perkins

Commercial scaling of electronic integrated circuits has proceeded at a fast pace once the initial hurdle to integration was overcome. Recently, it has been shown that record active and passive optical device counts, exceeding 50 discrete components, can be incorporated onto a single monolithic 100 Gbps DWDM transmitter PIC InP chip. We will investigate key production metrics for this large-scale PIC commercial device as well as other analogs to other III-V semiconductor commercial devices. Using the yield management tools pioneered by silicon based electronics, we will present data supporting their scalability and the manufacturability of these large-scale PICs


optical fiber communication conference | 2014

500 Gb/s and beyond photonic integrated circuit module transmitters and receivers

Fred A. Kish; M. Reffle; Tim Butrie; Mehrdad Ziari; P. Evans; Scott W. Corzine; Huan-Shang Tsai; Don Pavinski; Jiaming Zhang; Jie Tang; Andrew Dentai; Ranjani Muthiah; Jacco Pleumeekers; Damien Lambert; Mark J. Missey; Vikrant La; M. Fisher; Sanjeev Murthy; Randal A. Salvatore; Scott Demars; Adam James; Jeffrey T. Rahn; Saurabh Kumar; Matthew L. Mitchell; Jianping Zhang; Tiangong Liu; Radhakrishnan Nagarajan; Masaki Kato; D. O. Welch

500-Gb/s transmitter and receiver photonic integrated circuit (PIC) modules are reviewed as well as their scaling to Tb/s and higher data capacities.


international conference on indium phosphide and related materials | 2009

InP-based photonic integrated circuits: Technology and manufacturing

R. Schneider; J. Pleumeekers; C. Joyner; Vikrant Lal; Andrew Dentai; Ranjani Muthiah; Damien Lambert; Sheila Hurtt; S. W. Corzine; Sanjeev Murthy; E. M. Strzelecka; P. V. Studenkov; Masaki Kato; Mark J. Missey; Mehrdad Ziari; Jon Rossi; R. Nagarajan; F.A. Kish

Large-scale InP-based photonic integrated circuits were first introduced in 2004, representing over an order-of-magnitude increase in integration complexity for commercial InP devices. In this talk we will review recent developments and manufacturing of these novel components.

Collaboration


Dive into the Sanjeev Murthy's collaboration.

Researchain Logo
Decentralizing Knowledge