Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Grundstein is active.

Publication


Featured researches published by Andrew Grundstein.


Monthly Weather Review | 2003

Distribution of Mesoscale Convective Complex Rainfall in the United States

Walker S. Ashley; Thomas L. Mote; P. Grady Dixon; Sharon L. Trotter; Emily J. Powell; Joshua D. Durkee; Andrew Grundstein

Several annual mesoscale convective complex (MCC) summaries have been compiled since Maddox strictly defined their criteria in 1980. These previous studies have largely been independent of each other and therefore have not established the extended spatial and temporal patterns associated with these large, quasi-circular, and, typically, severe convective systems. This deficiency is primarily due to the difficulty of archiving enough satellite imagery to accurately record each MCC based on Maddox’s criteria. Consequently, this study utilizes results from each of the MCC summaries compiled between 1978 and 1999 for the United States in order to develop a more complete climatology, or description of long-term means and interannual variation, of these storms. Within the 22-yr period, MCC summaries were compiled for a total of 15 yr. These 15 yr of MCC data are employed to establish estimated tracks for all MCCs documented and, thereafter, are utilized to determine MCC populations on a monthly, seasonal, annual, and multiyear basis. Subsequent to developing an extended climatology of MCCs, the study ascertains the spatial and temporal patterns of MCC rainfall and determines the precipitation contributions made by MCCs over the central and eastern United States. Results indicate that during the warm season, significant portions of the Great Plains receive, on average, between 8% and 18% of their total precipitation from MCC rainfall. However, there is large yearly and even monthly variability in the location and frequency of MCC events that leads to highly variable precipitation contributions.


International Journal of Biometeorology | 2012

A retrospective analysis of American football hyperthermia deaths in the United States

Andrew Grundstein; Craig A. Ramseyer; Fang Zhao; Jordan L. Pesses; Pete D. Akers; Aneela Qureshi; Laura Becker; John A. Knox; Myron Petro

Over the period 1980–2009, there were 58 documented hyperthermia deaths of American-style football players in the United States. This study examines the geography, timing, and meteorological conditions present during the onset of hyperthermia, using the most complete dataset available. Deaths are concentrated in the eastern quadrant of the United States and are most common during August. Over half the deaths occurred during morning practices when high humidity levels were common. The athletes were typically large (79% with a body mass index >30) and mostly (86%) played linemen positions. Meteorological conditions were atypically hot and humid by local standards on most days with fatalities. Further, all deaths occurred under conditions defined as high or extreme by the American College of Sports Medicine using the wet bulb globe temperature (WBGT), but under lower threat levels using the heat index (HI). Football-specific thresholds based on clothing (full football uniform, practice uniform, or shorts) were also examined. The thresholds matched well with data from athletes wearing practice uniforms but poorly for those in shorts only. Too few cases of athletes in full pads were available to draw any broad conclusions. We recommend that coaches carefully monitor players, particularly large linemen, early in the pre-season on days with wet bulb globe temperatures that are categorized as high or extreme. Also, as most of the deaths were among young athletes, longer acclimatization periods may be needed.


International Journal of Biometeorology | 2009

Maximum vehicle cabin temperatures under different meteorological conditions

Andrew Grundstein; Vernon Meentemeyer; John F. Dowd

A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41–76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.


Thorax | 2008

Thunderstorm associated asthma in Atlanta, Georgia.

Andrew Grundstein; Stefanie Ebelt Sarnat; Mitchel Klein; Marshall Shepherd; Luke P. Naeher; Thomas L. Mote; Paige E. Tolbert

Associations between thunderstorm activity and asthma morbidity have been reported in numerous locations around the world.1 The most prominent hypotheses explaining the associations are that pollen grains rupture by osmotic shock in rainwater, releasing allergens, and that gusty winds from thunderstorm downdrafts spread particles and/or aeroallergens, which may ultimately increase the risk of asthma attacks. A full understanding of “thunderstorm asthma” is crucial, especially with projections of increases in heavy rainfall, thunderstorm events and aeroallergen concentrations as the climate system warms.2 3 Many existing studies of this phenomenon have been limited in power and scope.1 Our study seeks to conduct the most extensive investigation of thunderstorm occurrence and asthma morbidity to date in a region, the Southeast US, that has not previously been examined but where thunderstorms …


Climatic Change | 2014

Assessment of CMIP5 global model simulations and climate change projections for the 21 st century using a modified Thornthwaite climate classification

Nellie Elguindi; Andrew Grundstein; S. Bernardes; U. Turuncoglu; Johannes J. Feddema

A modified Thornthwaite Climate Classification is applied to a 32-member ensemble of CMIP5 GCMs in order to 1) evaluate model performance in the historical climate and 2) assess projected climate change at the end of the 21stcentury following two greenhouse gas representative concentration pathways (RCP4.5 and RCP8.5). This classification scheme differs from the well-known Köppen approach as it uses potential evapotranspiration for thermal conditions, a moisture index for moisture conditions, and has even intervals between climate classes. The multi-model ensemble (MME) reproduces the main spatial features of the global climate reasonably well, however, in many regions the climate types are too moist. Extreme climate types, such as those found in polar and desert regions, as well as the cool- and cold-wet types of eastern North America and the warm and cool-moist types found in the southern U.S., eastern South America, central Africa and Europe are reproduced best by the MME. In contrast, the cold-dry and cold-semiarid climate types characterizing much of the high northern latitudes and the warm-wet type found in parts of Indonesia and southeast Asia are poorly represented by the MME. Regionally, most models exhibit the same sign in moisture and thermal biases, varying only in magnitude. Substantial changes in climate types are projected in both the RCP4.5 and RCP8.5 scenarios. Area coverage of torrid climate types expands by 11 % and 19 % in the RCP4.5 and RCP8.5 projections, respectively. Furthermore, a large portion of these areas in the tropics will experience thermal conditions which exceed the range of historical values and fall into a novel super torrid climate class. The greatest growth in moisture types in climate zones is among those with dry climates (moisture index values < 0) with increased areas of more than 8 % projected by the RCP8.5 MME.


Bulletin of the American Meteorological Society | 2010

QUAntIfyInG thE hEAt-RELAtED hAzARD fOR ChILDREn In MOtOR VEhICLES

Andrew Grundstein; John F. Dowd; Vernon Meentemeyer

Thirty-seven children on average die each year in the United States from vehicle-related hyperthermia. In many cases, the parent or caregiver intentionally left the child unattended in the car, unaware of how quickly temperatures may reach deadly levels. To better quantify how quickly temperatures may increase within a car, maximum rates of temperature change were computed from data collected on 14 clear days in Athens, Georgia. Also, a human thermal exchange model was used in a case study to investigate the influence of different meteorological factors on the heat stress of a child in a hot vehicle. Results indicate that a car may heat up by approximately 4°C in 5 min, 7°C in 10 min, 16°C in 30 min, and 26°C in 60 min. Within the vehicle, the dominant energy transfers toward the child are via longwave radiation and conduction from the hot interior surfaces of the car. Modeling simulations show that sun exposure and high-humidity conditions further increase the heat stress on the child but that a negative...


Weather, Climate, and Society | 2014

Assessing the Performance of a Vulnerability Index during Oppressive Heat across Georgia, United States

George Maier; Andrew Grundstein; Woncheol Jang; Chao Li; Luke P. Naeher; Marshall Shepherd

Extreme heat is the leading weather-related killer in the United States. Vulnerability to extreme heat has previously been identified and mapped in urban areas to improve heat morbidity and mortality prevention efforts.However,onlylimitedworkhasexaminedvulnerabilityoutsideofurbanlocations. Thisstudyseeksto broaden the geographic context of earlier work and compute heat vulnerability across the state of Georgia, which offers diverse landscapes and populations with varying sociodemographic characteristics. Here, a modified heat vulnerability index (HVI) developed by Reid et al. is used to characterize vulnerability by county. About half of counties with the greatest heat vulnerability index scores contain the larger cities in the state (i.e., Athens, Atlanta, Augusta, Columbus, Macon, and Savannah), while the other half of highvulnerability counties are located in more rural counties clustered in southwestern and east-central Georgia. Thesourceofvulnerabilityvariedbetweenthemoreurbanandruralhigh-vulnerabilitycounties,withpoverty and population of nonwhite residents driving vulnerability in the more urban counties and social isolation/ populationofelderly/poor healththedominantfactorinthemoreruralcounties.Additionally,theeffectiveness ofthe HVIinidentifyingvulnerablepopulations was investigated byexaminingtheeffectofmodificationofthe vulnerability index score with mortality during extreme heat. Except for the least vulnerable categories, the relative risk of mortality increases with increasing vulnerability. For the highest-vulnerability counties, oppressively hot days lead to a 7.7% increase in mortality.


Climatic Change | 2013

An integrated approach to assessing 21st century climate change over the contiguous U.S. using the NARCCAP RCM output

Nellie Elguindi; Andrew Grundstein

We utilize a revised Thornthwaite climate classification system for model intercomparisons and to visualize future climate change. This classification system uses an improved moisture factor that accounts for both evapotranspiration and precipitation, a thermal index based on potential evapotranspiration, and even intervals between categories for ease of interpretation. The use of climate types is a robust way to assess a model’s ability to reproduce mutlivariate conditions. We compare output from multiple regional climate models (RCMs) participating in NARCCAP (North American Regional Climate Change Assessment Program) as well as their coarser driving general circulation models (GCMs). Overall, the RCM ensemble does a good job in reproducing the main features of U.S. climate types. The “added-value” gained by downscaling with RCMs is significant, particularly in topographic regions such as the west coast and Appalachian Mountains. Ensemble model output from the scenario simulations indicates a recession of cold climate zones across the eastern U.S. and northern tier of the country as well as in mountainous areas. Projections also indicate the development of a novel climate zone, the torrid climate, across southern portions of the country. In addition, the U.S. will become drier, particularly across the Midwest as the moisture boundary shifts eastward, and in the the Appalachian region. Climate types in the Pacific Northwest, however, will not change greatly. Finally, we demonstrate possible applications for the forecast climate types and associated output variables.


Journal of Applied Meteorology | 2004

The Role of Airmass Types and Surface Energy Fluxes in Snow Cover Ablation in the Central Appalachians

Daniel J. Leathers; Daniel Y. Graybeal; Thomas L. Mote; Andrew Grundstein; David A. Robinson

A one-dimensional snowpack model, a unique airmass identification scheme, and surface weather observations are used to investigate large ablation events in the central Appalachian Mountains of North America. Data from cooperative observing stations are used to identify large ablation events within a 1 8 latitude 3 18 longitude grid box that covers the majority of the Lycoming Creek basin in northern Pennsylvania. All 1-day ablation events greater than or equal to 7.6 cm (3 in.) are identified for the period of 1950 through 2001. Seventy-one events are identified, and these days are matched with a daily airmass type derived using the Spatial Synoptic Classification technique. Average meteorological characteristics on ablation days of each airmass type are calculated in an effort to understand the diverse meteorological influences that led to the large ablation events. A onedimensional mass and energy balance snowpack model (‘‘SNTHERM’’) is used to calculate surface/atmosphere energy fluxes responsible for ablation under each airmass type. Results indicate that large ablation events take place under diverse airmass/synoptic conditions in the central Appalachians. Five airmass types account for the 71 large ablation events over the 52-yr period. Forty-three of the events occurred under ‘‘moist’’ airmass types and 28 under ‘‘dry’’ airmass conditions. Large ablation events under dry airmass types are driven primarily by daytime net radiation receipt, especially net solar radiation. These events tend to occur early and late in the snow cover season when solar radiation receipt is highest and are characterized by relatively clear skies, warm daytime temperatures, and low dewpoint temperatures. Moist airmass types are characterized by cloudy, windy conditions with higher dewpoint temperatures and often with liquid precipitation. During these events sensible heat flux is most often the dominant energy flux to the snowpack during ablation episodes. However, in many cases there is also a significant input of energy to the snowpack associated with condensation. Combinations of high sensible and latent heat fluxes often result in extreme ablation episodes, similar to those witnessed in this area in January 1996.


Journal of Applied Meteorology and Climatology | 2011

Trends in Extreme Apparent Temperatures over the United States, 1949–2010

Andrew Grundstein; John F. Dowd

AbstractBiometeorological indices, such as the apparent temperature, are widely used in studies of heat-related mortality to quantify the human sensation to the environmental conditions. Increases in the frequency of environmentally stressful days as indicated by biometeorological indices may augment the risk for heat-related morbidity and mortality. This study examines trends in the frequency of days with extreme maximum and minimum apparent temperatures across the United States for 1949–2010. An increase in occurrence of 1-day extreme minimum apparent temperatures is particularly notable, especially in the eastern and western United States, with 44% of stations exhibiting positive trends. About 20% of stations have positive trends in 1-day extreme maximum apparent temperature, mostly in the western United States. The median trend for both 1-day extreme maximum and minimum apparent temperature is approximately 2 days per 10 yr, indicating that by 2010 there were 12 more days with extreme apparent tempera...

Collaboration


Dive into the Andrew Grundstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas J. Casa

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge