Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas J. Casa is active.

Publication


Featured researches published by Douglas J. Casa.


Journal of Athletic Training | 2015

National Athletic Trainers' Association Position Statement: Exertional Heat Illnesses.

Douglas J. Casa; Julie K. DeMartini; Michael F. Bergeron; Dave Csillan; E. Randy Eichner; Rebecca M. Lopez; Michael S. Ferrara; Kevin C. Miller; Francis G. O'Connor; Michael N. Sawka; Susan W. Yeargin

OBJECTIVE To present best-practice recommendations for the prevention, recognition, and treatment of exertional heat illnesses (EHIs) and to describe the relevant physiology of thermoregulation. BACKGROUND Certified athletic trainers recognize and treat athletes with EHIs, often in high-risk environments. Although the proper recognition and successful treatment strategies are well documented, EHIs continue to plague athletes, and exertional heat stroke remains one of the leading causes of sudden death during sport. The recommendations presented in this document provide athletic trainers and allied health providers with an integrated scientific and clinically applicable approach to the prevention, recognition, treatment of, and return-to-activity guidelines for EHIs. These recommendations are given so that proper recognition and treatment can be accomplished in order to maximize the safety and performance of athletes. RECOMMENDATIONS Athletic trainers and other allied health care professionals should use these recommendations to establish onsite emergency action plans for their venues and athletes. The primary goal of athlete safety is addressed through the appropriate prevention strategies, proper recognition tactics, and effective treatment plans for EHIs. Athletic trainers and other allied health care professionals must be properly educated and prepared to respond in an expedient manner to alleviate symptoms and minimize the morbidity and mortality associated with these illnesses.


Exercise and Sport Sciences Reviews | 2007

Cold water immersion: the gold standard for exertional heatstroke treatment.

Douglas J. Casa; Brendon P. McDermott; Elaine C. Lee; Susan W. Yeargin; Lawrence E. Armstrong; Carl M. Maresh

The key to maximize the chances of surviving exertional heatstroke is rapidly decreasing the elevated core body temperature. Many methods exist to cool the body, but current evidence strongly supports the use of cold water. Preferably, the athlete should be immersed in cold water. If lack of equipment or staff prevents immersion, a continual dousing with cold water provides an effective cooling modality. We refute the many criticisms of this treatment and provide scientific evidence supporting cold water immersion for exertional heatstroke.


Journal of Strength and Conditioning Research | 2009

Effect of Caffeine on Sport-specific Endurance Performance: A Systematic Review

Jennifer F. Klau; Douglas J. Casa; Lawrence E. Armstrong; Carl M. Maresh

Ganio, MS, Klau, JF, Casa, DJ, Armstrong, LE, and Maresh, CM. Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res 23(1): 315-324, 2009-Endurance athletes often ingest caffeine because of its reported ergogenic properties. Although there are a vast number of studies quantifying caffeines effects, many research studies measure endurance performance using a time-to-exhaustion test (subjects exercise at a fixed intensity to volitional exhaustion). Time-to-exhaustion as a performance measure is not ideal because of the high degree of measurement variability between and within subjects. Also, we are unaware of any endurance sports in which individuals win by going a longer distance or for a longer amount of time than their competitors. Measuring performance with a time-trial test (set distance or time with best effort) has high reproducibility and is more applicable to sport. Therefore, the purpose of this review was to critically and objectively evaluate studies that have examined the effect of caffeine on time-trial endurance (>5 minutes) performance. A literature search revealed 21 studies with a total of 33 identifiable caffeine treatments that measured endurance performance with a time-trial component. Each study was objectively analyzed with the Physiotherapy Evidence Database (PEDro) scale. The mean PEDro rating was 9.3 out of 10, indicating a high quality of research in this topic area. The mean improvement in performance with caffeine ingestion was 3.2 ± 4.3%; however, this improvement was highly variable between studies (−0.3 to 17.3%). The high degree of variability may be dependent on a number of factors including ingestion timing, ingestion mode/vehicle, and subject habituation. Further research should seek to identify individual factors that mediate the large range of improvements observed with caffeine ingestion. In conclusion, caffeine ingestion can be an effective ergogenic aid for endurance athletes when taken before and/or during exercise in moderate quantities (3-6 mg·kg−1 body mass). Abstaining from caffeine at least 7 days before use will give the greatest chance of optimizing the ergogenic effect.


Sports Medicine | 2007

Hydration and Muscular Performance Does Fluid Balance Affect Strength, Power and High-Intensity Endurance?

Daniel A. Judelson; Carl M. Maresh; Jeffrey M. Anderson; Lawrence E. Armstrong; Douglas J. Casa; William J. Kraemer; Jeff S. Volek

Significant scientific evidence documents the deleterious effects of hypohydration (reduced total body water) on endurance exercise performance; however, the influence of hypohydration on muscular strength, power and high-intensity endurance (maximal activities lasting >30 seconds but <2 minutes) is poorly understood due to the inconsistent results produced by previous investigations. Several subtle methodological choices that exacerbate or attenuate the apparent effects of hypohydration explain much of this variability. After accounting for these factors, hypohydration appears to consistently attenuate strength (by ≈2%), power (by ≈3%) and high-intensity endurance (by ∼10%), suggesting alterations in total body water affect some aspect of force generation. Unfortunately, the relationships between performance decrement and crucial variables such as mode, degree and rate of water loss remain unclear due to a lack of suitably uninfluenced data. The physiological demands of strength, power and high-intensity endurance couple with a lack of scientific support to argue against previous hypotheses that suggest alterations in cardiovascular, metabolic and/or buffering function represent the performance-reducing mechanism of hypohydration. On the other hand, hypohydration might directly affect some component of the neuromuscular system, but this possibility awaits thorough evaluation. A critical review of the available literature suggests hypohydration limits strength, power and highintensity endurance and, therefore, is an important factor to consider when attempting to maximise muscular performance in athletic, military and industrial settings.


Journal of Athletic Training | 2012

National athletic trainers' association position statement: preventing sudden death in sports

Douglas J. Casa; Kevin M. Guskiewicz; Scott Anderson; Ronald W. Courson; Jonathan F. Heck; Carolyn C. Jimenez; Brendon P McDermott; Michael G. Miller; Rebecca L. Stearns; Erik E. Swartz; Katie Walsh

OBJECTIVE To present recommendations for the prevention and screening, recognition, and treatment of the most common conditions resulting in sudden death in organized sports. BACKGROUND Cardiac conditions, head injuries, neck injuries, exertional heat stroke, exertional sickling, asthma, and other factors (eg, lightning, diabetes) are the most common causes of death in athletes. RECOMMENDATIONS These guidelines are intended to provide relevant information on preventing sudden death in sports and to give specific recommendations for certified athletic trainers and others participating in athletic health care.


Journal of Athletic Training | 2010

Influence of Hydration on Physiological Function and Performance During Trail Running in the Heat

Douglas J. Casa; Rebecca L. Stearns; Rebecca M. Lopez; Brendon P. McDermott; Susan W. Yeargin; Linda M. Yamamoto; Stephanie M. Mazerolle; Melissa W. Roti; Lawrence E. Armstrong; Carl M. Maresh

CONTEXT Authors of most field studies have not observed decrements in physiologic function and performance with increases in dehydration, although authors of well-controlled laboratory studies have consistently reported this relationship. Investigators in these field studies did not control exercise intensity, a known modulator of body core temperature. OBJECTIVE To directly examine the effect of moderate water deficit on the physiologic responses to various exercise intensities in a warm outdoor setting. DESIGN Semirandomized, crossover design. SETTING Field setting. PATIENTS OR OTHER PARTICIPANTS Seventeen distance runners (9 men, 8 women; age = 27 +/- 7 years, height = 171 +/- 9 cm, mass = 64.2 +/- 9.0 kg, body fat = 14.6% +/- 5.5%). INTERVENTION(S) Participants completed four 12-km runs (consisting of three 4-km loops) in the heat (average wet bulb globe temperature = 26.5 degrees C): (1) a hydrated, race trial (HYR), (2) a dehydrated, race trial (DYR), (3) a hydrated, submaximal trial (HYS), and (4) a dehydrated, submaximal trial (DYS). MAIN OUTCOME MEASURE(S) For DYR and DYS trials, dehydration was measured by body mass loss. In the submaximal trials, participants ran at a moderate pace that was matched by having them speed up or slow down based on pace feedback provided by researchers. Intestinal temperature was recorded using ingestible thermistors, and participants wore heart rate monitors to measure heart rate. RESULTS Body mass loss in relation to a 3-day baseline was greater for the DYR (-4.30% +/- 1.25%) and DYS trials (-4.59% +/- 1.32%) than for the HYR (-2.05% +/- 1.09%) and HYS (-2.0% +/- 1.24%) trials postrun (P < .001). Participants ran faster for the HYR (53.15 +/- 6.05 minutes) than for the DYR (55.7 +/- 7.45 minutes; P < .01), but speed was similar for HYS (59.57 +/- 5.31 minutes) and DYS (59.44 +/- 5.44 minutes; P > .05). Intestinal temperature immediately postrun was greater for DYR than for HYR (P < .05), the only significant difference. Intestinal temperature was greater for DYS than for HYS postloop 2, postrun, and at 10 and 20 minutes postrun (all: P < .001). Intestinal temperature and heart rate were 0.22 degrees C and 6 beats/min higher, respectively, for every additional 1% body mass loss during the DYS trial compared with the HYS trial. CONCLUSIONS A small decrement in hydration status impaired physiologic function and performance while trail running in the heat.


Current Sports Medicine Reports | 2012

Exertional heat stroke: new concepts regarding cause and care

Douglas J. Casa; Lawrence E. Armstrong; Glen P. Kenny; Francis G. O’Connor; Robert A. Huggins

Abstract When athletes, warfighters, and laborers perform intense exercise in the heat, the risk of exertional heat stroke (EHS) is ever present. The recent data regarding the fatalities due to EHS within the confines of organized American sport are not promising: during the past 35 years, the highest number of deaths in a 5-year period occurred from 2005 to 2009. This reminds us that, regardless of the advancements of knowledge in the area of EHS prevention, recognition, and treatment, knowledge has not been translated into practice. This article addresses important issues related to EHS cause and care. We focus on the predisposing factors, errors in care, physiology of cold water immersion, and return-to-play or duty considerations.


Journal of Strength and Conditioning Research | 2008

Caffeine use in sports: considerations for the athlete.

Bülent Sökmen; Lawrence E. Armstrong; William J. Kraemer; Douglas J. Casa; Joao C. Dias; Daniel A. Judelson; Carl M. Maresh

The ergogenic effects of caffeine on athletic performance have been shown in many studies, and its broad range of metabolic, hormonal, and physiologic effects has been recorded, as this review of the literature shows. However, few caffeine studies have been published to include cognitive and physiologic considerations for the athlete. The following practical recommendations consider the global effects of caffeine on the body: Lower doses can be as effective as higher doses during exercise performance without any negative coincidence; after a period of cessation, restarting caffeine intake at a low amount before performance can provide the same ergogenic effects as acute intake; caffeine can be taken gradually at low doses to avoid tolerance during the course of 3 or 4 days, just before intense training to sustain exercise intensity; and caffeine can improve cognitive aspects of performance, such as concentration, when an athlete has not slept well. Athletes and coaches also must consider how a persons body size, age, gender, previous use, level of tolerance, and the dose itself all influence the ergogenic effects of caffeine on sports performance.


Journal of Athletic Training | 2009

Acute Whole-Body Cooling for Exercise-Induced Hyperthermia: A Systematic Review

Brendon P. McDermott; Douglas J. Casa; Rebecca M. Lopez; Susan W. Yeargin; Lawrence E. Armstrong; Carl M. Maresh

OBJECTIVE To assess existing original research addressing the efficiency of whole-body cooling modalities in the treatment of exertional hyperthermia. DATA SOURCES During April 2007, we searched MEDLINE, EMBASE, Scopus, SportDiscus, CINAHL, and Cochrane Reviews databases as well as ProQuest for theses and dissertations to identify research studies evaluating whole-body cooling treatments without limits. Key words were cooling, cryotherapy, water immersion, cold-water immersion, ice-water immersion, icing, fanning, bath, baths, cooling modality, heat illness, heat illnesses, exertional heatstroke, exertional heat stroke, heat exhaustion, hyperthermia, hyperthermic, hyperpyrexia, exercise, exertion, running, football, military, runners, marathoner, physical activity, marathoning, soccer, and tennis. DATA SYNTHESIS Two independent reviewers graded each study on the Physiotherapy Evidence Database (PEDro) scale. Seven of 89 research articles met all inclusion criteria and a minimum score of 4 out of 10 on the PEDro scale. CONCLUSIONS After an extensive and critical review of the available research on whole-body cooling for the treatment of exertional hyperthermia, we concluded that ice-water immersion provides the most efficient cooling. Further research comparing whole-body cooling modalities is needed to identify other acceptable means. When ice-water immersion is not possible, continual dousing with water combined with fanning the patient is an alternative method until more advanced cooling means can be used. Until future investigators identify other acceptable whole-body cooling modalities for exercise-induced hyperthermia, ice-water immersion and cold-water immersion are the methods proven to have the fastest cooling rates.


Journal of Athletic Training | 2009

Validity and Reliability of Devices That Assess Body Temperature During Indoor Exercise in the Heat

Christopher M. Brown; Douglas J. Casa; Shannon M. Becker; Susan W. Yeargin; Brendon P. McDermott; Lindsay M. Boots; Paul W. Boyd; Lawrence E. Armstrong; Carl M. Maresh

CONTEXT When assessing exercise hyperthermia outdoors, the validity of certain commonly used body temperature measuring devices has been questioned. A controlled laboratory environment is generally less influenced by environmental factors (eg, ambient temperature, solar radiation, wind) than an outdoor setting. The validity of these temperature measuring devices in a controlled environment may be more acceptable. OBJECTIVE To assess the validity and reliability of commonly used temperature devices compared with rectal temperature in individuals exercising in a controlled, high environmental temperature indoor setting and then resting in a cool environment. DESIGN Time series study. SETTING Laboratory environmental chamber (temperature = 36.4 +/- 1.2 degrees C [97.5 +/- 2.16 degrees F], relative humidity = 52%) and cool laboratory (temperature = approximately 23.3 degrees C [74.0 degrees F], relative humidity = 40%). PATIENTS OR OTHER PARTICIPANTS Fifteen males and 10 females. INTERVENTION(S) Rectal, gastrointestinal, forehead, oral, aural, temporal, and axillary temperatures were measured with commonly used temperature devices. Temperature was measured before and 20 minutes after entering the environmental chamber, every 30 minutes during a 90-minute treadmill walk in the heat, and every 20 minutes during a 60-minute rest in mild conditions. Device validity and reliability were assessed with various statistical measures to compare the measurements using each device with rectal temperature. A device was considered invalid if the mean bias (average difference between rectal and device temperatures) was more than +/-0.27 degrees C (+/-0.50 degrees F). MAIN OUTCOME MEASURE(S) Measured temperature from each device (mean and across time). RESULTS The following devices provided invalid estimates of rectal temperature: forehead sticker (0.29 degrees C [0.52 degrees F]), oral temperature using an inexpensive device (-1.13 degrees C [-2.03 degrees F]), temporal temperature measured according to the instruction manual (-0.87 degrees C [-1.56 degrees F]), temporal temperature using a modified technique (-0.63 degrees C [-1.13 degrees F]), oral temperature using an expensive device (-0.86 degrees C, [-1.55 degrees F]), aural temperature (-0.67 degrees C, [-1.20 degrees F]), axillary temperature using an inexpensive device (-1.25 degrees C, [-2.24 degrees F]), and axillary temperature using an expensive device (-0.94 degrees F [-1.70 degrees F]). Measurement of intestinal temperature (mean bias of -0.02 degrees C [-0.03 degrees F]) was the only device considered valid. Devices measured in succession (intestinal, forehead, temporal, and aural) showed acceptable reliability (all had a mean bias = 0.09 degrees C [0.16 degrees F] and r >or= 0.94]). CONCLUSIONS Even during laboratory exercise in a controlled environment, devices used to measure forehead, temporal, oral, aural, and axillary body sites did not provide valid estimates of rectal temperature. Only intestinal temperature measurement met the criterion. Therefore, we recommend that rectal or intestinal temperature be used to assess hyperthermia in individuals exercising indoors in the heat.

Collaboration


Dive into the Douglas J. Casa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca M. Lopez

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan W. Yeargin

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge