Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew J. Hudson is active.

Publication


Featured researches published by Andrew J. Hudson.


Chemical Science | 2013

The transition from liquid to solid-like behaviour in ultrahigh viscosity aerosol particles

Rory M. Power; Stephen H. Simpson; Jonathan P. Reid; Andrew J. Hudson

For the first time, a measurement of the viscosity of microparticles composed of Newtonian fluids has been made over a range of 12 orders of magnitude (10−3 to 109 Pa s), extending from dilute aqueous solutions to the solid-like behaviour expected on approaching a glass transition. Using holographic optical tweezers to induce coalescence between two aerosol particles (volume <500 femtolitres), we observe the composite particle relax to a sphere over a timescale from 10−7 to 105 s, dependent on viscosity. The damped oscillations in shape illustrate the interplay of surface capillary forces and bulk fluid flow as the relaxation progresses. Viscosity values estimated from the extrapolation of measurements from macroscopic binary aqueous solutions of sucrose are shown to diverge from the microparticle measurements by as much as five orders of magnitude in the limit of ultrahigh solute supersaturation and viscosity. This is shown to be a consequence of the sensitivity of the viscosity to the composition of the particles, specifically the water content, and the often incorrect compositional dependence on water activity that are assumed to characterise aerosols and amorphous phases under dry conditions. For ternary mixtures of sodium chloride, sucrose and water, the measured viscosities similarly diverge from model predictions by up to three orders of magnitude. The Stokes–Einstein treatment for relating the diffusivity of water in sucrose droplets to the particle viscosity is found to depart from the measured viscosities by more than one order of magnitude when the viscosity exceeds 10 Pa s and up to six orders of magnitude at the highest viscosities accessed. Coalescence is shown to proceed with unit efficiency even up to the highest accessible viscosity. These measurements provide the first comprehensive account of the change in a material property accompanying a transition from a dilute solution to an amorphous semi-solid state using aerosol particles to probe the change in rheological properties.


Nucleic Acids Research | 2012

The transition in spliceosome assembly from complex E to complex A purges surplus U1 snRNPs from alternative splice sites

Mark J. Hodson; Andrew J. Hudson; Dmitry I. Cherny; Ian C. Eperon

Spliceosomes are assembled in stages. The first stage forms complex E, which is characterized by the presence of U1 snRNPs base-paired to the 5′ splice site, components recognizing the 3′ splice site and proteins thought to connect them. The splice sites are held in close proximity and the pre-mRNA is committed to splicing. Despite this, the sites for splicing appear not to be fixed until the next complex (A) forms. We have investigated the reasons why 5′ splice sites are not fixed in complex E, using single molecule methods to determine the stoichiometry of U1 snRNPs bound to pre-mRNA with one or two strong 5′ splice sites. In complex E most transcripts with two alternative 5′ splice sites were bound by two U1 snRNPs. However, the surplus U1 snRNPs were displaced during complex A formation in an ATP-dependent process requiring an intact 3′ splice site. This process leaves only one U1 snRNP per complex A, regardless of the number of potential sites. We propose a mechanism for selection of the 5′ splice site. Our results show that constitutive splicing components need not be present in a fixed stoichiometry in a splicing complex.


Journal of Chemical Physics | 2009

Comparison of the resonance-enhanced multiphoton ionization spectra of pyrrole and 2,5-dimethylpyrrole: Building toward an understanding of the electronic structure and photochemistry of porphyrins

Joseph M. Beames; Michael G. D. Nix; Andrew J. Hudson

The photophysical properties of porphyrins have relevance for their use as light-activated drugs in cancer treatment and sensitizers in solid-state solar cells. However, the appearance of their UV-visible spectra is usually explained inadequately by qualitative molecular-orbital theories. We intend to gain a better insight into the intense absorption bands, and excited-state dynamics, that make porphyrins appropriate for both of these applications by gradually building toward an understanding of the macrocyclic structure, starting with studies of smaller pyrrolic subunits. We have recorded the (1+1) and (2+1) resonance-enhanced multiphoton ionization (REMPI) spectra of pyrrole and 2,5-dimethylpyrrole between 25 600 cm(-1) (390 nm) and 48 500 cm(-1) (206 nm). We did not observe a (1+1) REMPI signal through the optically bright (1)B(2) (pipi( *)) and (1)A(1) (pipi( *)) states in pyrrole due to ultrafast deactivation via conical intersections with the dissociative (1)A(2) (pisigma( *)) and (1)B(1) (pisigma( *)) states. However, we did observe (2+1) REMPI through Rydberg states with a dominant feature at 27 432 cm(-1) (two-photon energy, 54 864 cm(-1)) assigned to a 3d<--pi transition. In contrast, 2,5-dimethylpyrrole has a broad and structured (1+1) REMPI spectrum between 36 000 and 42 500 cm(-1) as a result of vibronic transitions to the (1)B(2) (pipi( *)) state, and it does not show the 3d<--pi Rydberg transition via (2+1) REMPI. We have complemented the experimental studies by a theoretical treatment of the excited states of both molecules using time-dependent density functional theory (TD-DFT) and accounted for the contrasting features in the spectra. TD-DFT modeled the photochemical activity of both the optically dark (1)pisigma( *) states (dissociative) and optically bright (1)pipi( *) states well, predicting the barrierless deactivation of the (1)B(2) (pipi( *)) state of pyrrole and the bound minimum of the (1)B(2) (pipi( *)) state in 2,5-dimethylpyrrole. However, the quantitative agreement between vibronic transition energies and the excited-state frequencies calculated by TD-DFT was hampered by inaccurate modeling of Rydberg orbital mixing with the valence states, caused by the lack of an asymptotic correction to the exchange-correlation functionals used.


Journal of Chemical Physics | 2016

Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers

Bryan R. Bzdek; Liam Collard; James E. Sprittles; Andrew J. Hudson; Jonathan P. Reid

We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution <10 μs). The goals of this work are to: resolve the dynamics of droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tension and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.


Journal of Physical Chemistry A | 2012

Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap.

Rory M. Power; Jonathan P. Reid; Suman Anand; David McGloin; A. Almohamedi; N. S. Mistry; Andrew J. Hudson

The binary coalescence of aqueous droplets has been observed in a single-beam gradient-force optical trap. By measuring the time-dependent intensity for elastic scattering of light from the trapping laser, the dynamics of binary coalescence have been examined and the time scale for equilibration of a composite droplet to ambient conditions has been determined. These data are required for modeling the agglomeration of aqueous droplets in dense sprays and atmospheric aerosol. Elastic-light scattering from optically trapped particles has not been used previously to study the time-resolved dynamics of mixing. It is shown to offer a unique opportunity to characterize the binary coalescence of aqueous droplets with radii from 1 to 6 μm. The study of this size regime, which cannot be achieved by conventional imaging methods, is critical for understanding the interactions of droplets in the environment of dense sprays.


Analyst | 2011

Spectroscopic characterization of aqueous microdroplets containing inorganic salts

Helena Meresman; Andrew J. Hudson; Jonathan P. Reid

We have developed and studied methods to characterize the time-varying composition of liquid microdroplets, under controlled changes to environmental conditions, using Raman tweezers. This work has focussed on measurements of inorganic salts, such as nitrate and sulfate anions, which comprise a major fraction of the dissolved solutes in atmospheric aerosols. The experimental Raman intensities for the anions of inorganic salts in optically tweezed droplets were found to be in good agreement with theoretical estimates of photon scattering. The detection limit for sodium nitrate salt in a single particle was found to be ~4 pg. The mass of an inorganic salt in the droplet can be estimated from the Raman intensity of the anion bands using a calibration curve which is independent of droplet volume. The volume of the droplet, and concentration of solute, can be found directly from the spacing of morphology dependent resonances in the Raman band of water, or indirectly from the integrated-intensity of the Raman band for the solvent. The later strategy eliminates the uncertainty in the collection efficiency of Raman-scattered light related to varying particle sizes.


ACS Nano | 2015

Single-Fluorophore Detection in Femtoliter Droplets Generated by Flow Focusing

Robert Weinmeister; Emma Freeman; Ian C. Eperon; Alison M. Stuart; Andrew J. Hudson

Aqueous microdroplets with a volume of a few femtoliters are an ideal sample size for single-molecule fluorescence experiments. In particular, they enable prolonged measurements to be made on individual molecules that can diffuse freely in the surrounding medium. However, the rapid production of monodisperse droplets in a hydrodynamic flow, such as microfluidic flow focusing, will often involve volumes that are typically too large (>0.5 pL) for single-molecule studies. Desired volumes of a few femtoliters, or smaller, can be produced by either tip streaming or step emulsification in a flow-focusing device; however, in both of these methods, the aqueous droplets are dispersed in a large volume of the continuous phase, where individual droplets can diffuse perpendicular to the flow direction, and the monodispersity of droplet size produced by tip streaming is difficult to sustain for more than transient time scales. We show here that the optimized design and fabrication of microfluidic devices with shallow channel depths can result in the reliable production of stable droplets of a few femtoliters at a high rate in the dripping regime of flow focusing. Furthermore, the generated microdroplets are localized in a two-dimensional plane to enable immediate analysis. We have demonstrated the fluorescence monitoring of single molecules of encapsulated green fluorescent protein. The apparatus is straightfoward, inexpensive, and readily assembled within an ordinary laboratory environment.


Physical Chemistry Chemical Physics | 2010

Double-resonance spectroscopy of the jet-cooled free base and Cu(II) complex of protoporphyrin IX

Joseph M. Beames; Andrew J. Hudson; Timothy D. Vaden; John P. Simons

The excited-state dynamics of porphyrins, and related compounds, impact on their applications as photosensitizers for tumor-targeting drugs and solar cells. Many researchers have examined the influence of non-planar distortions in the ground-state geometry on the properties of photoexcited states. We have identified the added importance of conformational changes in the excited state, relative to the initial geometry, on the resulting decay pathways. The ground-state structure and photodynamics of free-base and Cu(ii) complexes of protoporphyrin IX, laser desorbed into a cold supersonic expansion, have been investigated using infrared ion-dip spectroscopy combined with density-functional theory calculations. The vibrational bands associated with the N-H stretching mode of the free base are broader in the first electronically excited state, accessed via the Q band of protoporphyrin IX, than the corresponding bands in the ground-electronic state. This is attributed to rapid intersystem crossing in the excited state promoted by extension of the N-H bonds. Our calculations show that the stretching modes are highly anharmonic, which suggests the likelihood that other conformational changes are also taking place in the excited state.


Nucleic Acids Research | 2016

Stoichiometries of U2AF35, U2AF65 and U2 snRNP reveal new early spliceosome assembly pathways.

Li Chen; Robert Weinmeister; Jana Kralovicova; Lucy P. Eperon; Igor Vorechovsky; Andrew J. Hudson; Ian C. Eperon

Abstract The selection of 3΄ splice sites (3΄ss) is an essential early step in mammalian RNA splicing reactions, but the processes involved are unknown. We have used single molecule methods to test whether the major components implicated in selection, the proteins U2AF35 and U2AF65 and the U2 snRNP, are able to recognize alternative candidate sites or are restricted to one pre-specified site. In the presence of adenosine triphosphate (ATP), all three components bind in a 1:1 stoichiometry with a 3΄ss. Pre-mRNA molecules with two alternative 3΄ss can be bound concurrently by two molecules of U2AF or two U2 snRNPs, so none of the components are restricted. However, concurrent occupancy inhibits splicing. Stoichiometric binding requires conditions consistent with coalescence of the 5΄ and 3΄ sites in a complex (I, initial), but if this cannot form the components show unrestricted and stochastic association. In the absence of ATP, when complex E forms, U2 snRNP association is unrestricted. However, if protein dephosphorylation is prevented, an I-like complex forms with stoichiometric association of U2 snRNPs and the U2 snRNA is base-paired to the pre-mRNA. Complex I differs from complex A in that the formation of complex A is associated with the loss of U2AF65 and 35.


Journal of the Royal Society Interface | 2015

Spectroscopic analysis of myoglobin and cytochrome c dynamics in isolated cardiomyocytes during hypoxia and reoxygenation

Abdullah Almohammedi; Sofia M. Kapetanaki; Bayden R. Wood; Emma Lloyd Raven; Nina M. Storey; Andrew J. Hudson

Raman microspectroscopy was applied to monitor the intracellular redox state of myoglobin and cytochrome c from isolated adult rat cardiomyocytes during hypoxia and reoxygenation. The nitrite reductase activity of myoglobin leads to the production of nitric oxide in cells under hypoxic conditions, which is linked to the inhibition of mitochondrial respiration. In this work, the subsequent reoxygenation of cells after hypoxia is shown to lead to increased levels of oxygen-bound myoglobin relative to the initial levels observed under normoxic conditions. Increased levels of reduced cytochrome c in ex vivo cells are also observed during hypoxia and reoxygenation by Raman microspectroscopy. The cellular response to reoxygenation differed dramatically depending on the method used in the preceding step to create hypoxic conditions in the cell suspension, where a chemical agent, sodium dithionite, leads to reduction of cytochromes in addition to removal of dissolved oxygen, and bubbling-N2 gas leads to displacement of dissolved oxygen only. These results have an impact on the assessment of experimental simulations of hypoxia in cells. The spectroscopic technique employed in this work will be used in the future as an analytical method to monitor the effects of varying levels of oxygen and nutrients supplied to cardiomyocytes during either the preconditioning of cells or the reperfusion of ischaemic tissue.

Collaboration


Dive into the Andrew J. Hudson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph M. Beames

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. S. Mistry

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge