Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan P. Reid is active.

Publication


Featured researches published by Jonathan P. Reid.


Chemical Society Reviews | 2012

Exploring the complexity of aerosol particle properties and processes using single particle techniques

Ulrich K. Krieger; Claudia Marcolli; Jonathan P. Reid

The complex interplay of processes that govern the size, composition, phase and morphology of aerosol particles in the atmosphere is challenging to understand and model. Measurements on single aerosol particles (2 to 100 μm in diameter) held in electrodynamic, optical and acoustic traps or deposited on a surface can allow the individual processes to be studied in isolation under controlled laboratory conditions. In particular, measurements can now be made of particle size with unprecedented accuracy (sub-nanometre) and over a wide range of timescales (spanning from milliseconds to many days). The physical state of a particle can be unambiguously identified and its composition and phase can be resolved with a high degree of spatial resolution. In this review, we describe the advances made in our understanding of aerosol properties and processes from measurements made of phase behaviour, hygroscopic growth, morphology, vapour pressure and the kinetics of water transport for single particles. We also show that studies of the oxidative aging of single particles, although limited in number, can allow the interplay of these properties to be investigated. We conclude by considering the contributions that single particle measurements can continue to make to our understanding of the properties and processes occurring in atmospheric aerosol.


Plasma Sources Science and Technology | 2016

Plasma–liquid interactions: a review and roadmap

Pj Peter Bruggeman; Mark J. Kushner; Bruce R. Locke; Jge Gardeniers; W. G. Graham; David B. Graves; Rchm Hofman-Caris; D Marić; Jonathan P. Reid; E Ceriani; D. Fernandez Rivas; John E. Foster; Sc Garrick; Yury Gorbanev; Satoshi Hamaguchi; Felipe Iza; Helena Jablonowski; Juergen F. Kolb; František Krčma; Petr Lukes; Zdenko Machala; I. Marinov; Davide Mariotti; S. Mededovic Thagard; D. Minakata; Erik C. Neyts; J. Pawlat; Z. Lj. Petrović; R. Pflieger; Stephan Reuter

Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Comparing the mechanism of water condensation and evaporation in glassy aerosol

David L. Bones; Jonathan P. Reid; Daniel M. Lienhard; Ulrich K. Krieger

Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the condensed aerosol phase on the rates of both condensation and evaporation, demonstrating that significant inhibition in mass transfer occurs for ultraviscous aerosol, not just for glassy aerosol. Using coarse mode (3–4 um radius) ternary sucrose/sodium chloride/aqueous droplets as a proxy for multicomponent ambient aerosol, we demonstrate that the timescale for particle equilibration correlates with bulk viscosity and can be ≫103 s. Extrapolation of these timescales to particle sizes in the accumulation mode (e.g., approximately 100 nm) by applying the Stokes-Einstein equation suggests that the kinetic limitations imposed on mass transfer of water by slow bulk phase diffusion must be more fully investigated for atmospheric aerosol. Measurements have been made on particles covering a range in dynamic viscosity from < 0.1 to > 1013 Pa s. We also retrieve the radial inhomogeneities apparent in particle composition during condensation and evaporation and contrast the dynamics of slow dissolution of a viscous core into a labile shell during condensation with the slow percolation of water during evaporation through a more homogeneous viscous particle bulk.


Physical Chemistry Chemical Physics | 2004

Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap

Rebecca J. Hopkins; Laura Mitchem; Andrew D. Ward; Jonathan P. Reid

Optical tweezers are used to control aerosol droplets, 4–14 μm in diameter, over time frames of hours at trapping powers of less than 10 mW. When coupled with cavity enhanced Raman scattering (CERS), the evolution of the size of a single droplet can be examined with nanometre accuracy. Trapping efficiencies for water and decane droplets are reported and the possible impact of droplet heating is discussed. We demonstrate that the unique combination of optical tweezing and CERS can enable the fundamental factors governing the coagulation of two liquid droplets to be studied.


Chemical Science | 2013

The transition from liquid to solid-like behaviour in ultrahigh viscosity aerosol particles

Rory M. Power; Stephen H. Simpson; Jonathan P. Reid; Andrew J. Hudson

For the first time, a measurement of the viscosity of microparticles composed of Newtonian fluids has been made over a range of 12 orders of magnitude (10−3 to 109 Pa s), extending from dilute aqueous solutions to the solid-like behaviour expected on approaching a glass transition. Using holographic optical tweezers to induce coalescence between two aerosol particles (volume <500 femtolitres), we observe the composite particle relax to a sphere over a timescale from 10−7 to 105 s, dependent on viscosity. The damped oscillations in shape illustrate the interplay of surface capillary forces and bulk fluid flow as the relaxation progresses. Viscosity values estimated from the extrapolation of measurements from macroscopic binary aqueous solutions of sucrose are shown to diverge from the microparticle measurements by as much as five orders of magnitude in the limit of ultrahigh solute supersaturation and viscosity. This is shown to be a consequence of the sensitivity of the viscosity to the composition of the particles, specifically the water content, and the often incorrect compositional dependence on water activity that are assumed to characterise aerosols and amorphous phases under dry conditions. For ternary mixtures of sodium chloride, sucrose and water, the measured viscosities similarly diverge from model predictions by up to three orders of magnitude. The Stokes–Einstein treatment for relating the diffusivity of water in sucrose droplets to the particle viscosity is found to depart from the measured viscosities by more than one order of magnitude when the viscosity exceeds 10 Pa s and up to six orders of magnitude at the highest viscosities accessed. Coalescence is shown to proceed with unit efficiency even up to the highest accessible viscosity. These measurements provide the first comprehensive account of the change in a material property accompanying a transition from a dilute solution to an amorphous semi-solid state using aerosol particles to probe the change in rheological properties.


Journal of Physical Chemistry A | 2010

Equilibrium Morphology of Mixed Organic/Inorganic/Aqueous Aerosol Droplets: Investigating the Effect of Relative Humidity and Surfactants

N-O A. Kwamena; Jariya Buajarern; Jonathan P. Reid

There is considerable uncertainty regarding the phase, morphology, and composition of atmospheric aerosol. In particular, it is important to understand the microphysical structure of mixed inorganic/organic aerosol given that the structure can influence the surface composition, the role of heterogeneous chemistry, gas-particle partitioning of semivolatile organics, and water uptake in the sub- and supersaturated regimes. We present here a thermodynamic model that predicts the equilibrium morphology of mixed inorganic/organic aerosol. The model uses an iterative process to calculate the total surface free energy of all possible morphologies when two immiscible droplets are brought into contact, with the configuration with the lowest total surface free energy representing the final equilibrium structure. Sensitivity tests and validation experiments were performed by investigating the decane/NaCl/aqueous system. The addition of a water-soluble surfactant was found to promote spreading of decane on the aqueous droplet. This was confirmed by laboratory experiments, although the importance of considering the relative volumes of the aqueous and organic phases was found to play a significant role in determining the equilibrium structure. Decreasing the relative humidity (RH) of the surrounding gas phase was found to decrease the spreading of decane on the aqueous droplet, leading to thicker organic lenses on smaller aqueous droplets. We conclude that a core-shell structure is not always predicted to be the thermodynamically favored state of aerosol containing distinct hydrophobic and hydrophilic phases. Gaining a more reliable picture of the microphysical structure of aerosol is crucial to be able to model aerosol behavior and properties in the atmosphere, particularly when aerosol is dominated by internal mixtures of inorganic and organic components and when the organic is present in a (subcooled) liquid state.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Influence of organic films on the evaporation and condensation of water in aerosol

James F. Davies; Rachael E. H. Miles; Allen E. Haddrell; Jonathan P. Reid

Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [CnH(2n+1)OH], with the value decreasing from 2.4 × 10−3 to 1.7 × 10−5 as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid.


Chemical Reviews | 2015

Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures

Merete Bilde; Kelley C. Barsanti; Murray Booth; Christopher D. Cappa; Neil M. Donahue; Eva U. Emanuelsson; Gordon McFiggans; Ulrich K. Krieger; Claudia Marcolli; David Topping; Paul J. Ziemann; Mark H. Barley; Simon L. Clegg; Benjamin J. Dennis-Smither; Mattias Hallquist; Åsa M. Hallquist; Andrey Khlystov; Markku Kulmala; D. Mogensen; Carl J. Percival; Francis D. Pope; Jonathan P. Reid; M. A. V. Ribeiro da Silva; Thomas Rosenoern; Kent Salo; V. Soonsin; Taina Yli-Juuti; N. L. Prisle; Joakim Pagels; Juergen Rarey

There are a number of techniques that can be used that differ in terms of whether they fundamentally probe the equilibrium and the temperature range over which they can be applied. The series of homologous, straight-chain dicarboxylic acids have received much attention over the past decade given their atmospheric relevance, commercial availability, and low saturation vapor pressures, thus making them ideal test compounds. Uncertainties in the solid-state saturation vapor pressures obtained from individual methodologies are typically on the order of 50-100%, but the differences between saturation vapor pressures obtained with different methods are approximately 1-4 orders of magnitude, with the spread tending to increase as the saturation vapor pressure decreases. Some of the dicarboxylic acids can exist with multiple solid-state structures that have distinct saturation vapor pressures. Furthermore, the samples on which measurements are performed may actually exist as amorphous subcooled liquids rather than solid crystalline compounds, again with consequences for the measured saturation vapor pressures, since the subcooled liquid phase will have a higher saturation vapor pressure than the crystalline solid phase. Compounds with equilibrium vapor pressures in this range will exhibit the greatest sensitivities in terms of their gas to particle partitioning to uncertainties in their saturation vapor pressures, with consequent impacts on the ability of explicit and semiexplicit chemical models to simulate secondary organic aerosol formation.


International Reviews in Physical Chemistry | 2007

Spectroscopic studies of the size and composition of single aerosol droplets

Jonathan P. Reid; Helena Meresman; Laura Mitchem; Rachel Symes

The characterization of aerosol properties and processes, non-intrusively and directly, poses a severe analytical challenge. In order to understand the role of aerosols in often complex environments, it is necessary to probe the particles in situ and without perturbation. Sampling followed by end-of-line analysis can lead to perturbations in particle composition, morphology and size, particularly when analysing liquid aerosol droplets containing volatile components. Optical spectroscopy can provide a strategy for the direct assessment of particle size, composition and phase. We review here the application of linear and non-linear Raman spectroscopies in the characterization of liquid aerosol droplets. Spontaneous Raman scattering can allow the unambiguous identification of chemical components and the determination of droplet composition. Stimulated Raman spectroscopy can allow the determination of droplet size with nanometre accuracy and can allow the characterization of near-surface composition. When combined, the mixing state and homogeneity in droplet composition can be investigated. We highlight some applications of these spectroscopic techniques in studies of the kinetics of particle transformation, the equilibrium composition of aqueous aerosol droplets, and the coagulation and mixing state of organic and aqueous aerosol components. Specifically, we examine the heat and mass transfer accompanying the evaporation of volatile components from liquid droplets, the equilibrium size of aqueous/sodium chloride droplets with varying relative humidity, and the mixing of the immiscible decane and water components during droplet coagulation. We conclude by considering the potential of these techniques for improving our understanding of aerosol properties and processes.


Journal of Physical Chemistry A | 2013

Measurements of the Sensitivity of Aerosol Hygroscopicity and the κ Parameter to the O/C Ratio

Andrew M. J. Rickards; Rachael E. H. Miles; James F. Davies; Frances H. Marshall; Jonathan P. Reid

We report measurements of the subsaturated hygroscopic growth of aerosol particles composed of single organic components of varying oxygen-to-carbon ratio up to relative humidities approaching saturation using the techniques of aerosol optical tweezers and an electrodynamic balance. The variation in the hygroscopicity parameter κ between compounds of even the same O/C ratio is found to be significant with, for example, a range in κ values from 0.12 to 0.38 for compounds with an O/C of 1. The measurements are compared with a review of all of the available literature data for which both the κ value and O/C ratio are reported, and a new parametrization is determined. Critical supersaturations predicted using this parametrization yield values that have associated uncertainties that are comparable to typical uncertainties in experimental measurements of critical supersaturations. However, the systematic variability between κ parametrizations determined from different studies remains large, consistent with the O/C ratio providing only an approximate guide to aerosol hygroscopicity and reflecting significant variations for aerosols of different chemical functionality, composition, and oxidation history.

Collaboration


Dive into the Jonathan P. Reid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge