Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew L. Kau is active.

Publication


Featured researches published by Andrew L. Kau.


Science | 2013

Gut microbiota from twins discordant for obesity modulate metabolism in mice.

Vanessa K. Ridaura; Jeremiah J. Faith; Federico E. Rey; Jiye Cheng; Alexis E. Duncan; Andrew L. Kau; Nicholas W. Griffin; Vincent Lombard; Bernard Henrissat; James R. Bain; Michael J. Muehlbauer; Olga Ilkayeva; Clay F. Semenkovich; Katsuhiko Funai; David K. Hayashi; Barbara J. Lyle; Margaret C. Martini; Luke K. Ursell; Jose C. Clemente; William Van Treuren; William A. Walters; Rob Knight; Christopher B. Newgard; Andrew C. Heath; Jeffrey I. Gordon

Introduction Establishing whether specific structural and functional configurations of a human gut microbiota are causally related to a given physiologic or disease phenotype is challenging. Twins discordant for obesity provide an opportunity to examine interrelations between obesity and its associated metabolic disorders, diet, and the gut microbiota. Transplanting the intact uncultured or cultured human fecal microbiota from each member of a discordant twin pair into separate groups of recipient germfree mice permits the donors’ communities to be replicated, differences between their properties to be identified, the impact of these differences on body composition and metabolic phenotypes to be discerned, and the effects of diet-by-microbiota interactions to be analyzed. In addition, cohousing coprophagic mice harboring transplanted microbiota from discordant pairs provides an opportunity to determine which bacterial taxa invade the gut communities of cage mates, how invasion correlates with host phenotypes, and how invasion and microbial niche are affected by human diets. Cohousing Ln and Ob mice prevents increased adiposity in Ob cage mates (Ob). (A) Adiposity change after 10 days of cohousing. *P < 0.05 versus Ob controls (Student’s t test). (B) Bacteroidales from Ln microbiota invade Ob microbiota. Columns show individual mice. Methods Separate groups of germfree mice were colonized with uncultured fecal microbiota from each member of four twin pairs discordant for obesity or with culture collections from an obese (Ob) or lean (Ln) co-twin. Animals were fed a mouse chow low in fat and rich in plant polysaccharides, or one of two diets reflecting the upper or lower tertiles of consumption of saturated fats and fruits and vegetables based on the U.S. National Health and Nutrition Examination Survey (NHANES). Ln or Ob mice were cohoused 5 days after colonization. Body composition changes were defined by quantitative magnetic resonance. Microbiota or microbiome structure, gene expression, and metabolism were assayed by 16S ribosomal RNA profiling, whole-community shotgun sequencing, RNA-sequencing, and mass spectrometry. Host gene expression and metabolism were also characterized. Results and Discussion The intact uncultured and culturable bacterial component of Ob co-twins’ fecal microbiota conveyed significantly greater increases in body mass and adiposity than those of Ln communities. Differences in body composition were correlated with differences in fermentation of short-chain fatty acids (increased in Ln), metabolism of branched-chain amino acids (increased in Ob), and microbial transformation of bile acid species (increased in Ln and correlated with down-regulation of host farnesoid X receptor signaling). Cohousing Ln and Ob mice prevented development of increased adiposity and body mass in Ob cage mates and transformed their microbiota’s metabolic profile to a leanlike state. Transformation correlated with invasion of members of Bacteroidales from Ln into Ob microbiota. Invasion and phenotypic rescue were diet-dependent and occurred with the diet representing the lower tertile of U.S. consumption of saturated fats, and upper tertile of fruits and vegetables, but not with the diet representing the upper tertile of saturated fats, and lower tertile of fruit and vegetable consumption. These results reveal that transmissible and modifiable interactions between diet and microbiota influence host biology. Transforming Fat to Thin How much does the microbiota influence the hosts phenotype? Ridaura et al. (1241214 ; see the Perspective by Walker and Parkhill) obtained uncultured fecal microbiota from twin pairs discordant for body mass and transplanted them into adult germ-free mice. It was discovered that adiposity is transmissible from human to mouse and that it was associated with changes in serum levels of branched-chain amino acids. Moreover, obese-phenotype mice were invaded by members of the Bacteroidales from the lean mice, but, happily, the lean animals resisted invasion by the obese microbiota. Mice carrying gut bacteria from lean humans protect their cage mates from the effects of gut bacteria from fat humans. [Also see Perspective by Walker and Parkhill] The role of specific gut microbes in shaping body composition remains unclear. We transplanted fecal microbiota from adult female twin pairs discordant for obesity into germ-free mice fed low-fat mouse chow, as well as diets representing different levels of saturated fat and fruit and vegetable consumption typical of the U.S. diet. Increased total body and fat mass, as well as obesity-associated metabolic phenotypes, were transmissible with uncultured fecal communities and with their corresponding fecal bacterial culture collections. Cohousing mice harboring an obese twin’s microbiota (Ob) with mice containing the lean co-twin’s microbiota (Ln) prevented the development of increased body mass and obesity-associated metabolic phenotypes in Ob cage mates. Rescue correlated with invasion of specific members of Bacteroidetes from the Ln microbiota into Ob microbiota and was diet-dependent. These findings reveal transmissible, rapid, and modifiable effects of diet-by-microbiota interactions.


Nature | 2011

Human nutrition, the gut microbiome and the immune system

Andrew L. Kau; Philip P. Ahern; Nicholas W. Griffin; Andrew L. Goodman; Jeffrey I. Gordon

Marked changes in socio-economic status, cultural traditions, population growth and agriculture are affecting diets worldwide. Understanding how our diet and nutritional status influence the composition and dynamic operations of our gut microbial communities, and the innate and adaptive arms of our immune system, represents an area of scientific need, opportunity and challenge. The insights gleaned should help to address several pressing global health problems.


Nature | 2012

Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity

Jorge Henao-Mejia; Eran Elinav; Cheng Cheng Jin; Liming Hao; Wajahat Z. Mehal; Till Strowig; Christoph A. Thaiss; Andrew L. Kau; Stephanie C. Eisenbarth; Michael J. Jurczak; Joao Paulo Camporez; Gerald I. Shulman; Jeffrey I. Gordon; Hal M. Hoffman; Richard A. Flavell

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and the leading cause of chronic liver disease in the Western world. Twenty per cent of NAFLD individuals develop chronic hepatic inflammation (non-alcoholic steatohepatitis, NASH) associated with cirrhosis, portal hypertension and hepatocellular carcinoma, yet the causes of progression from NAFLD to NASH remain obscure. Here, we show that the NLRP6 and NLRP3 inflammasomes and the effector protein IL-18 negatively regulate NAFLD/NASH progression, as well as multiple aspects of metabolic syndrome via modulation of the gut microbiota. Different mouse models reveal that inflammasome-deficiency-associated changes in the configuration of the gut microbiota are associated with exacerbated hepatic steatosis and inflammation through influx of TLR4 and TLR9 agonists into the portal circulation, leading to enhanced hepatic tumour-necrosis factor (TNF)-α expression that drives NASH progression. Furthermore, co-housing of inflammasome-deficient mice with wild-type mice results in exacerbation of hepatic steatosis and obesity. Thus, altered interactions between the gut microbiota and the host, produced by defective NLRP3 and NLRP6 inflammasome sensing, may govern the rate of progression of multiple metabolic syndrome-associated abnormalities, highlighting the central role of the microbiota in the pathogenesis of heretofore seemingly unrelated systemic auto-inflammatory and metabolic disorders.


Cell | 2011

NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis

Eran Elinav; Till Strowig; Andrew L. Kau; Jorge Henao-Mejia; Christoph A. Thaiss; Carmen J. Booth; David R. Peaper; John Bertin; Stephanie C. Eisenbarth; Jeffrey I. Gordon; Richard A. Flavell

Inflammasomes are multiprotein complexes that function as sensors of endogenous or exogenous damage-associated molecular patterns. Here, we show that deficiency of NLRP6 in mouse colonic epithelial cells results in reduced IL-18 levels and altered fecal microbiota characterized by expanded representation of the bacterial phyla Bacteroidetes (Prevotellaceae) and TM7. NLRP6 inflammasome-deficient mice were characterized by spontaneous intestinal hyperplasia, inflammatory cell recruitment, and exacerbation of chemical colitis induced by exposure to dextran sodium sulfate (DSS). Cross-fostering and cohousing experiments revealed that the colitogenic activity of this microbiota is transferable to neonatal or adult wild-type mice, leading to exacerbation of DSS colitis via induction of the cytokine, CCL5. Antibiotic treatment and electron microscopy studies further supported the role of Prevotellaceae as a key representative of this microbiota-associated phenotype. Altogether, perturbations in this inflammasome pathway, including NLRP6, ASC, caspase-1, and IL-18, may constitute a predisposing or initiating event in some cases of human IBD.


Science | 2013

Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor

Michelle I. Smith; Tanya Yatsunenko; Mark J. Manary; Indi Trehan; Rajhab S. Mkakosya; Jiye Cheng; Andrew L. Kau; Stephen S. Rich; Patrick Concannon; Josyf C. Mychaleckyj; Jie Liu; Eric R. Houpt; Jia V. Li; Elaine Holmes; Jeremy K. Nicholson; Dan Knights; Luke K. Ursell; Rob Knight; Jeffrey I. Gordon

Not Just Wasting Malnutrition is well known in Malawi, including a severe form—kwashiorkor—in which children do not simply waste away, they also suffer edema, liver damage, skin ulceration, and anorexia. Smith et al. (p. 548; see the Perspective by Relman) investigated the microbiota of pairs of twins in Malawian villages and found notable differences in the composition of the gut microbiota in children with kwashiorkor. In these children, a bacterial species related to Desulfovibrio, which has been associated with bowel disease and inflammation, was noticeable. When the fecal flora from either the healthy or the sick twin was transplanted into groups of germ-free mice, the mice that received the kwashiorkor sample started to lose weight, like their human counterpart. Genomic analyses of gut microbiota explain responses to dietary therapy for severe malnutrition. [Also see Perspective by Relman] Kwashiorkor, an enigmatic form of severe acute malnutrition, is the consequence of inadequate nutrient intake plus additional environmental insults. To investigate the role of the gut microbiome, we studied 317 Malawian twin pairs during the first 3 years of life. During this time, half of the twin pairs remained well nourished, whereas 43% became discordant, and 7% manifested concordance for acute malnutrition. Both children in twin pairs discordant for kwashiorkor were treated with a peanut-based, ready-to-use therapeutic food (RUTF). Time-series metagenomic studies revealed that RUTF produced a transient maturation of metabolic functions in kwashiorkor gut microbiomes that regressed when administration of RUTF was stopped. Previously frozen fecal communities from several discordant pairs were each transplanted into gnotobiotic mice. The combination of Malawian diet and kwashiorkor microbiome produced marked weight loss in recipient mice, accompanied by perturbations in amino acid, carbohydrate, and intermediary metabolism that were only transiently ameliorated with RUTF. These findings implicate the gut microbiome as a causal factor in kwashiorkor.


Science Translational Medicine | 2015

Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy

Andrew L. Kau; Joseph D. Planer; Jie Liu; Sindhuja Rao; Tanya Yatsunenko; Indi Trehan; Mark J. Manary; Ta-Chiang Liu; Thaddeus S. Stappenbeck; Kenneth Maleta; Per Ashorn; Kathryn G. Dewey; Eric R. Houpt; Chyi-Song Hsieh; Jeffrey I. Gordon

Gut bacterial strains targeted by IgA in undernourished Malawian children produce severe enteropathy in gnotobiotic mice and correlate with health status. BugFACS Inc. In a new study, Kau et al. show that bacterial targets of gut immunoglobulin A (IgA) responses have diagnostic and therapeutic implications for childhood undernutrition. Purifying IgA-targeted microbes from fecal samples collected during the first 2 years of life from Malawian children using a method called BugFACS, these authors demonstrate that IgA responses to several types of bacteria, including Enterobacteriaceae, correlate with undernutrition. Transplanting IgA-bound bacteria from undernourished children to germ-free mice led to disruption of the gut lining (epithelium), weight loss, and sepsis in animals consuming a nutrient-deficient Malawian diet. This was prevented by a nutrient-sufficient diet or two IgA-targeted bacterial species from a healthy donor’s microbiota. Dissecting a collection of cultured IgA-targeted bacterial strains from an undernourished donor revealed that Enterobacteriaceae interacted with other community members to produce pathology. These findings have implications for the diagnosis and treatment of childhood undernutrition. To gain insights into the interrelationships among childhood undernutrition, the gut microbiota, and gut mucosal immune/barrier function, we purified bacterial strains targeted by immunoglobulin A (IgA) from the fecal microbiota of two cohorts of Malawian infants and children. IgA responses to several bacterial taxa, including Enterobacteriaceae, correlated with anthropometric measurements of nutritional status in longitudinal studies. The relationship between IgA responses and growth was further explained by enteropathogen burden. Gnotobiotic mouse recipients of an IgA+ bacterial consortium purified from the gut microbiota of undernourished children exhibited a diet-dependent enteropathy characterized by rapid disruption of the small intestinal and colonic epithelial barrier, weight loss, and sepsis that could be prevented by administering two IgA-targeted bacterial species from a healthy microbiota. Dissection of a culture collection of 11 IgA-targeted strains from an undernourished donor, sufficient to transmit these phenotypes, disclosed that Enterobacteriaceae interacted with other consortium members to produce enteropathy. These findings indicate that bacterial targets of IgA responses have etiologic, diagnostic, and therapeutic implications for childhood undernutrition.


Immunity | 2014

Distinct Contributions of Aire and Antigen-Presenting-Cell Subsets to the Generation of Self-Tolerance in the Thymus

Justin S.A. Perry; Chan-Wang J. Lio; Andrew L. Kau; Katherine Nutsch; Zhuo Yang; Jeffrey I. Gordon; Kenneth M. Murphy; Chyi-Song Hsieh

The contribution of thymic antigen-presenting-cell (APC) subsets in selecting a self-tolerant T cell population remains unclear. We show that bone marrow (BM) APCs and medullary thymic epithelial cells (mTECs) played nonoverlapping roles in shaping the T cell receptor (TCR) repertoire by deletion and regulatory T (Treg) cell selection of distinct TCRs. Aire, which induces tissue-specific antigen expression in mTECs, affected the TCR repertoire in a manner distinct from mTEC presentation. Approximately half of Aire-dependent deletion or Treg cell selection utilized a pathway dependent on antigen presentation by BM APCs. Batf3-dependent CD8α⁺ dendritic cells (DCs) were the crucial BM APCs for Treg cell selection via this pathway, showing enhanced ability to present antigens from stromal cells. These results demonstrate the division of function between thymic APCs in shaping the self-tolerant TCR repertoire and reveal an unappreciated cooperation between mTECs and CD8α⁺ DCs for presentation of Aire-induced self-antigens to developing thymocytes.


Infection and Immunity | 2009

Contribution of Autolysin and Sortase A during Enterococcus faecalis DNA-Dependent Biofilm Development

Pascale S. Guiton; Chia S. Hung; Kimberly A. Kline; Robyn Roth; Andrew L. Kau; Ericka Hayes; John E. Heuser; Karen W. Dodson; Michael G. Caparon; Scott J. Hultgren

ABSTRACT Biofilm production is a major attribute of Enterococcus faecalis clinical isolates. Although some factors, such as sortases, autolysin, and extracellular DNA (eDNA), have been associated with E. faecalis biofilm production, the mechanisms underlying the contributions of these factors to this process have not been completely elucidated yet. In this study we define important roles for the major E. faecalis autolysin (Atn), eDNA, and sortase A (SrtA) during the developmental stages of biofilm formation under static and hydrodynamic conditions. Deletion of srtA affects the attachment stage and results in a deficiency in biofilm production. Atn-deficient mutants are delayed in biofilm development due to defects in primary adherence and DNA release, which we show to be particularly important during the accumulative phase for maturation and architectural stability of biofilms. Confocal laser scanning and freeze-dry electron microscopy of biofilms grown under hydrodynamic conditions revealed that E. faecalis produces a DNase I-sensitive fibrous network, which is important for biofilm stability and is absent in atn-deficient mutant biofilms. This study establishes the stage-specific requirements for SrtA and Atn and demonstrates a role for Atn in the pathway leading to DNA release during biofilm development in E. faecalis.


Infection and Immunity | 2005

Enterococcus faecalis Tropism for the Kidneys in the Urinary Tract of C57BL/6J Mice

Andrew L. Kau; Steven M. Martin; William R. Lyon; Ericka Hayes; Michael G. Caparon; Scott J. Hultgren

ABSTRACT Enterococcus faecalis is a gram-positive bacterium that can cause a variety of nosocomial infections of which urinary tract infections are the most common. These infections can be exceptionally difficult to treat because of drug resistance of many E. faecalis isolates. Despite their troublesome nature, little is known about the host or bacterial factors necessary for E. faecalis to cause disease in the urinary tract. Using a mouse model of urinary tract infection, we have shown that E. faecalis is capable of persisting in the kidneys of mice for at least 2 weeks. In contrast, bacterial titers from the bladders of the same mice were inconsistent and tended to be much lower than those recovered from the kidney. This preference for the kidney over the bladder is also observed in other clinical E. faecalis strains. Histologic examination of bladder and kidney tissues demonstrated that E. faecalis induced an inflammatory response in the kidney but not in the bladder. This inflammatory response was TLR2 independent and did not induce inflammatory markers typically associated with uropathogenic Escherichia coli. Using a competition assay, we demonstrated that a pyelonephritis clinical isolate had a growth advantage over a laboratory strain of E. faecalis in the kidneys but not in the bladders of mice. Taken together, these results demonstrate that E. faecalis has tropism for the kidneys in the urinary tracts of mice and that this system can be used to study factors involved in the pathogenesis of urinary tract infections.


Nature | 2016

Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice

Joseph D. Planer; Yangqing Peng; Andrew L. Kau; Laura V. Blanton; I. Malick Ndao; Phillip I. Tarr; Barbara B. Warner; Jeffrey I. Gordon

Immunoglobulin A (IgA), the major class of antibody secreted by the gut mucosa, is an important contributor to gut barrier function1–3. The repertoire of IgA bound to gut bacteria reflects both T cell-dependent and -independent pathways4,5, plus glycans present on the antibody’s secretory component6. Human gut bacterial taxa targeted by IgA in the setting of intestinal barrier dysfunction are capable of producing intestinal pathology when isolated and transferred to gnotobiotic mice7,8. A complex reorientation of gut immunity occurs as infants transition from passively acquired IgA present in breast milk to host-derived IgA9–11. How IgA responses co-develop with assembly of the microbiota during this period remains poorly understood. Here, we (i) identify a set of age-discriminatory bacterial taxa whose representations define a program of microbiota assembly/maturation during the first 2 postnatal years that is shared across 40 healthy USA twin pairs; (ii) describe a pattern of progression of gut mucosal IgA responses to bacterial members of the microbiota that is highly distinctive for family members (twin pairs) during the first several postnatal months then generalizes across pairs in the second year; and (iii) assess the effects of zygosity, birth mode and breast feeding. Age-associated differences in these IgA responses can be recapitulated in young germ-free mice, colonized with fecal microbiota obtained from two twin pairs at 6 and 18 months of age, and fed a sequence of human diets that simulate the transition from milk feeding to complementary foods. The majority of these responses were robust to diet suggesting that ‘intrinsic’ properties of community members play a dominant role in dictating IgA responses. The approach described can be used to define gut mucosal immune development in health and disease states and help discover ways for repairing or preventing perturbations in this facet of host immunity.

Collaboration


Dive into the Andrew L. Kau's collaboration.

Top Co-Authors

Avatar

Jeffrey I. Gordon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Scott J. Hultgren

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Chyi-Song Hsieh

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Indi Trehan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rob Knight

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Liu

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Jiye Cheng

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jorge Henao-Mejia

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge