Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew R. Nager is active.

Publication


Featured researches published by Andrew R. Nager.


Cell | 2009

Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine.

Steven E. Glynn; Andreas Martin; Andrew R. Nager; Tania A. Baker; Robert T. Sauer

ClpX is a AAA+ machine that uses the energy of ATP binding and hydrolysis to unfold native proteins and translocate unfolded polypeptides into the ClpP peptidase. The crystal structures presented here reveal striking asymmetry in ring hexamers of nucleotide-free and nucleotide-bound ClpX. Asymmetry arises from large changes in rotation between the large and small AAA+ domains of individual subunits. These differences prevent nucleotide binding to two subunits, generate a staggered arrangement of ClpX subunits and pore loops around the hexameric ring, and provide a mechanism for coupling conformational changes caused by ATP binding or hydrolysis in one subunit to flexing motions of the entire ring. Our structures explain numerous solution studies of ClpX function, predict mechanisms for pore elasticity during translocation of irregular polypeptides, and suggest how repetitive conformational changes might be coupled to mechanical work during the ATPase cycle of ClpX and related molecular machines.


Developmental Cell | 2014

The Intraflagellar Transport Protein IFT27 Promotes BBSome Exit from Cilia through the GTPase ARL6/BBS3

Gerald M. Liew; Fan Ye; Andrew R. Nager; Jp Murphy; Js Lee; Mike Aguiar; David K. Breslow; Steven P. Gygi; Maxence V. Nachury

The sorting of signaling receptors into and out of cilia relies on the BBSome, a complex of Bardet-Biedl syndrome (BBS) proteins, and on the intraflagellar transport (IFT) machinery. GTP loading onto the Arf-like GTPase ARL6/BBS3 drives assembly of a membrane-apposed BBSome coat that promotes cargo entry into cilia, yet how and where ARL6 is activated remains elusive. Here, we show that the Rab-like GTPase IFT27/RABL4, a known component of IFT complex B, promotes the exit of BBSome and associated cargoes from cilia. Unbiased proteomics and biochemical reconstitution assays show that, upon disengagement from the rest of IFT-B, IFT27 directly interacts with the nucleotide-free form of ARL6. Furthermore, IFT27 prevents aggregation of nucleotide-free ARL6 in solution. Thus, we propose that IFT27 separates from IFT-B inside cilia to promote ARL6 activation, BBSome coat assembly, and subsequent ciliary exit, mirroring the process by which BBSome mediates cargo entry into cilia.


Cell | 2013

Nucleotide Binding and Conformational Switching in the Hexameric Ring of a AAA+ Machine.

Benjamin Michael Stinson; Andrew R. Nager; Steven E. Glynn; Karl R. Schmitz; Tania A. Baker; Robert T. Sauer

ClpX, a AAA+ ring homohexamer, uses the energy of ATP binding and hydrolysis to power conformational changes that unfold and translocate target proteins into the ClpP peptidase for degradation. In multiple crystal structures, some ClpX subunits adopt nucleotide-loadable conformations, others adopt unloadable conformations, and each conformational class exhibits substantial variability. Using mutagenesis of individual subunits in covalently tethered hexamers together with fluorescence methods to assay the conformations and nucleotide-binding properties of these subunits, we demonstrate that dynamic interconversion between loadable and unloadable conformations is required to couple ATP hydrolysis by ClpX to mechanical work. ATP binding to different classes of subunits initially drives staged allosteric changes, which set the conformation of the ring to allow hydrolysis and linked mechanical steps. Subunit switching between loadable and unloadable conformations subsequently isomerizes or resets the configuration of the nucleotide-loaded ring and is required for mechanical function.


Cell | 2017

An Actin Network Dispatches Ciliary GPCRs into Extracellular Vesicles to Modulate Signaling

Andrew R. Nager; Jaclyn S. Goldstein; Vicente Herranz-Pérez; Didier Portran; Fan Ye; Jose Manuel Garcia-Verdugo; Maxence V. Nachury

Signaling receptors dynamically exit cilia upon activation of signaling pathways such as Hedgehog. Here, we find that when activated G protein-coupled receptors (GPCRs) fail to undergo BBSome-mediated retrieval from cilia back into the cell, these GPCRs concentrate into membranous buds at the tips of cilia before release into extracellular vesicles named ectosomes. Unexpectedly, actin and the actin regulators drebrin and myosin 6 mediate ectosome release from the tip of cilia. Mirroring signal-dependent retrieval, signal-dependent ectocytosis is a selective and effective process that removes activated signaling molecules from cilia. Congruently, ectocytosis compensates for BBSome defects as ectocytic removal of GPR161, a negative regulator of Hedgehog signaling, permits the appropriate transduction of Hedgehog signals in Bbs mutants. Finally, ciliary receptors that lack retrieval determinants such as the anorexigenic GPCR NPY2R undergo signal-dependent ectocytosis in wild-type cells. Our data show that signal-dependent ectocytosis regulates ciliary signaling in physiological and pathological contexts.


Nature Structural & Molecular Biology | 2012

Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine

Steven E. Glynn; Andrew R. Nager; Tania A. Baker; Robert T. Sauer

In the Escherichia coli ClpXP protease, a hexameric ClpX ring couples ATP binding and hydrolysis to mechanical protein unfolding and translocation into the ClpP degradation chamber. Rigid-body packing between the small AAA+ domain of each ClpX subunit and the large AAA+ domain of its neighbor stabilizes the hexamer. By connecting the parts of each rigid-body unit with disulfide bonds or linkers, we created covalently closed rings that retained robust activity. A single-residue insertion in the hinge that connects the large and small AAA+ domains and forms part of the nucleotide-binding site uncoupled ATP hydrolysis from productive unfolding. We propose that ATP hydrolysis drives changes in the conformation of one hinge and its flanking domains and that the changes are propagated around the AAA+ ring through the topologically constrained set of rigid-body units and hinges to produce coupled ring motions that power substrate unfolding.


Journal of Molecular Biology | 2011

Stepwise unfolding of a β barrel protein by the AAA+ ClpXP protease.

Andrew R. Nager; Tania A. Baker; Robert T. Sauer

In the AAA+ ClpXP protease, ClpX uses the energy of ATP binding and hydrolysis to unfold proteins before translocating them into ClpP for degradation. For proteins with C-terminal ssrA tags, ClpXP pulls on the tag to initiate unfolding and subsequent degradation. Here, we demonstrate that an initial step in ClpXP unfolding of the 11-stranded β barrel of superfolder GFP-ssrA involves extraction of the C-terminal β strand. The resulting 10-stranded intermediate is populated at low ATP concentrations, which stall ClpXP unfolding, and at high ATP concentrations, which support robust degradation. To determine if stable unfolding intermediates cause low-ATP stalling, we designed and characterized circularly permuted GFP variants. Notably, stalling was observed for a variant that formed a stable 10-stranded intermediate but not for one in which this intermediate was unstable. A stepwise degradation model in which the rates of terminal-strand extraction, strand refolding or recapture, and unfolding of the 10-stranded intermediate all depend on the rate of ATP hydrolysis by ClpXP accounts for the observed changes in degradation kinetics over a broad range of ATP concentrations. Our results suggest that the presence or absence of unfolding intermediates will play important roles in determining whether forced enzymatic unfolding requires a minimum rate of ATP hydrolysis.


Journal of Biological Chemistry | 2011

Glycine Dimerization Motif in the N-terminal Transmembrane Domain of the High Density Lipoprotein Receptor SR-BI Required for Normal Receptor Oligomerization and Lipid Transport

Leonid Gaidukov; Andrew R. Nager; Shangzhe Xu; Marsha Penman; Monty Krieger

Scavenger receptor class B, type I (SR-BI), a CD36 superfamily member, is an oligomeric high density lipoprotein (HDL) receptor that mediates negatively cooperative HDL binding and selective lipid uptake. We identified in the N-terminal transmembrane (N-TM) domain of SR-BI a conserved glycine dimerization motif, G15X2G18X3AX2G25, of which the submotif G18X3AX2G25 significantly contributes to homodimerization and lipid uptake activity. SR-BI variants were generated by mutations (single or multiple Gly → Leu substitutions) or by replacing the N-TM domain with those from other CD36 superfamily members containing (croquemort) or lacking (lysosomal integral membrane protein (LIMP) II) this glycine motif (chimeras). None of the SR-BI variants exhibited altered surface expression (based on antibody binding) or HDL binding. However, the G15L/G18L/G25L triple mutant exhibited reductions in cell surface homo-oligomerization (>10-fold) and the rate of selective lipid uptake (∼2-fold). Gly18 and Gly25 were necessary for normal lipid uptake activity of SR-BI and the SR-BI/croquemort chimera. The lipid uptake activity of the glycine motif-deficient SR-BI/LIMP II chimera was low but could be increased by introducing glycines at positions 18 and 25. The rate of lipid uptake mediated by SR-BI/LIMP II chimeras was proportional to the extent of receptor oligomerization. Thus, the glycine dimerization motif G18X3AX2G25 in the N-TM domain of SR-BI contributes substantially to the homo-oligomerization and lipid transport activity of SR-BI but does not influence the negative cooperativity of HDL binding. Oligomerization-independent binding cooperativity suggests that classic allostery is not involved and that the negative cooperativity is probably the consequence of a “lattice effect” (interligand steric interference accompanying binding to adjacent receptors).


Nature Chemical Biology | 2015

Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine

Ohad Iosefson; Andrew R. Nager; Tania A. Baker; Robert T. Sauer

Hexameric AAA+ unfoldases of ATP-dependent proteases and protein-remodeling machines use conserved loops that line the axial pore to apply force to substrates during the mechanical processes of protein unfolding and translocation. Whether loops from multiple subunits act independently or coordinately in these processes is a critical aspect of mechanism but is currently unknown for any AAA+ machine. By studying covalently linked hexamers of the E. coli ClpX unfoldase bearing different numbers and configurations of wild-type and mutant pore loops, we show that loops function synergistically, with the number of wild-type loops required for efficient degradation depending upon the stability of the protein substrate. Our results support a mechanism in which a power stroke initiated in one subunit of the ClpX hexamer results in the concurrent movement of all six pore loops, which coordinately grip and apply force to the substrate.


Nature Structural & Molecular Biology | 2014

Structural Basis for Membrane Targeting of the Bbsome by Arl6

André Mourão; Andrew R. Nager; Maxence V. Nachury; Esben Lorentzen

The BBSome is a coat-like ciliary trafficking complex composed of proteins mutated in Bardet-Biedl syndrome (BBS). A critical step in BBSome-mediated sorting is recruitment of the BBSome to membranes by the GTP-bound Arf-like GTPase ARL6. We have determined crystal structures of Chlamydomonas reinhardtii ARL6–GDP, ARL6–GTP and the ARL6–GTP–BBS1 complex. The structures demonstrate how ARL6–GTP binds the BBS1 β-propeller at blades 1 and 7 and explain why GTP- but not GDP-bound ARL6 can recruit the BBSome to membranes. Single point mutations in the ARL6-GTP-BBS1 interface abolish the interaction of ARL6 with the BBSome and prevent the import of BBSomes into cilia. Furthermore, we show that BBS1 with the M390R mutation, responsible for 30% of all reported BBS disease cases, fails to interact with ARL6–GTP, thus providing a molecular rationale for patient pathologies.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Loss of the BBSome perturbs endocytic trafficking and disrupts virulence of Trypanosoma brucei

Gerasimos Langousis; Michelle M. Shimogawa; Edwin A. Saada; Ajay A. Vashisht; Roberto Spreafico; Andrew R. Nager; William D. Barshop; Maxence V. Nachury; James A. Wohlschlegel; Kent L. Hill

Significance We combine genetics, biochemistry, cell biology, and proteomics to define Bardet–Biedl Syndrome complex (BBSome) composition, location, and function in the deadly parasite Trypanosoma brucei. BBSome mutants have reduced infectivity in mice, and quantitative proteomics identified parasite surface proteome changes that may underlie reduced virulence. To our knowledge, this work presents the first comprehensive study of the BBSome in any microbial pathogen. T. brucei is also among the earliest organisms to have diverged from other eukaryotes, showing deep evolutionary origins of the BBSome. Localization to membranes and vesicles at the flagellar pocket, together with functional analyses and interaction with clathrin and ubiquitin, supports a model whereby the BBSome functions in postendocytic sorting of select surface proteins. Cilia (eukaryotic flagella) are present in diverse eukaryotic lineages and have essential motility and sensory functions. The cilium’s capacity to sense and transduce extracellular signals depends on dynamic trafficking of ciliary membrane proteins. This trafficking is often mediated by the Bardet–Biedl Syndrome complex (BBSome), a protein complex for which the precise subcellular distribution and mechanisms of action are unclear. In humans, BBSome defects perturb ciliary membrane protein distribution and manifest clinically as Bardet–Biedl Syndrome. Cilia are also important in several parasites that cause tremendous human suffering worldwide, yet biology of the parasite BBSome remains largely unexplored. We examined BBSome functions in Trypanosoma brucei, a flagellated protozoan parasite that causes African sleeping sickness in humans. We report that T. brucei BBS proteins assemble into a BBSome that interacts with clathrin and is localized to membranes of the flagellar pocket and adjacent cytoplasmic vesicles. Using BBS gene knockouts and a mouse infection model, we show the T. brucei BBSome is dispensable for flagellar assembly, motility, bulk endocytosis, and cell viability but required for parasite virulence. Quantitative proteomics reveal alterations in the parasite surface proteome of BBSome mutants, suggesting that virulence defects are caused by failure to maintain fidelity of the host–parasite interface. Interestingly, among proteins altered are those with ubiquitination-dependent localization, and we find that the BBSome interacts with ubiquitin. Collectively, our data indicate that the BBSome facilitates endocytic sorting of select membrane proteins at the base of the cilium, illuminating BBSome roles at a critical host–pathogen interface and offering insights into BBSome molecular mechanisms.

Collaboration


Dive into the Andrew R. Nager's collaboration.

Top Co-Authors

Avatar

Robert T. Sauer

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tania A. Baker

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fan Ye

Stanford University

View shared research outputs
Top Co-Authors

Avatar

Benjamin Michael Stinson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ohad Iosefson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Adrian O. Olivares

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andreas Martin

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge