Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew S. Cohen is active.

Publication


Featured researches published by Andrew S. Cohen.


Nature | 2003

Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa

Catherine M. O'Reilly; Simone R. Alin; Pierre-Denis Plisnier; Andrew S. Cohen; Brent A. McKee

Although the effects of climate warming on the chemical and physical properties of lakes have been documented, biotic and ecosystem-scale responses to climate change have been only estimated or predicted by manipulations and models. Here we present evidence that climate warming is diminishing productivity in Lake Tanganyika, East Africa. This lake has historically supported a highly productive pelagic fishery that currently provides 25–40% of the animal protein supply for the populations of the surrounding countries. In parallel with regional warming patterns since the beginning of the twentieth century, a rise in surface-water temperature has increased the stability of the water column. A regional decrease in wind velocity has contributed to reduced mixing, decreasing deep-water nutrient upwelling and entrainment into surface waters. Carbon isotope records in sediment cores suggest that primary productivity may have decreased by about 20%, implying a roughly 30% decrease in fish yields. Our study provides evidence that the impact of regional effects of global climate change on aquatic ecosystem functions and services can be larger than that of local anthropogenic activity or overfishing.


Science | 2008

Northern hemisphere controls on tropical southeast African climate during the past 60,000 years.

Jessica E. Tierney; J. M. Russell; Yongsong Huang; Jaap S. Sinninghe Damsté; Ellen C. Hopmans; Andrew S. Cohen

The processes that control climate in the tropics are poorly understood. We applied compound-specific hydrogen isotopes (δD) and the TEX86 (tetraether index of 86 carbon atoms) temperature proxy to sediment cores from Lake Tanganyika to independently reconstruct precipitation and temperature variations during the past 60,000 years. Tanganyika temperatures follow Northern Hemisphere insolation and indicate that warming in tropical southeast Africa during the last glacial termination began to increase ∼3000 years before atmospheric carbon dioxide concentrations. δD data show that this region experienced abrupt changes in hydrology coeval with orbital and millennial-scale events recorded in Northern Hemisphere monsoonal climate records. This implies that precipitation in tropical southeast Africa is more strongly controlled by changes in Indian Ocean sea surface temperatures and the winter Indian monsoon than by migration of the Intertropical Convergence Zone.


Proceedings of the National Academy of Sciences of the United States of America | 2007

East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins

Christopher A. Scholz; Thomas C. Johnson; Andrew S. Cohen; John W. King; John A. Peck; Johnathan T. Overpeck; Michael R. Talbot; Erik T. Brown; Leonard Kalindekafe; Philip Y. O. Amoako; Robert P. Lyons; Timothy M. Shanahan; Isla S. Castañeda; C. W. Heil; Steven L. Forman; Lanny Ray McHargue; Kristina R. M. Beuning; Jeanette Gomez; James Pierson

The environmental backdrop to the evolution and spread of early Homo sapiens in East Africa is known mainly from isolated outcrops and distant marine sediment cores. Here we present results from new scientific drill cores from Lake Malawi, the first long and continuous, high-fidelity records of tropical climate change from the continent itself. Our record shows periods of severe aridity between 135 and 75 thousand years (kyr) ago, when the lakes water volume was reduced by at least 95%. Surprisingly, these intervals of pronounced tropical African aridity in the early late-Pleistocene were much more severe than the Last Glacial Maximum (LGM), the period previously recognized as one of the most arid of the Quaternary. From these cores and from records from Lakes Tanganyika (East Africa) and Bosumtwi (West Africa), we document a major rise in water levels and a shift to more humid conditions over much of tropical Africa after ≈70 kyr ago. This transition to wetter, more stable conditions coincides with diminished orbital eccentricity, and a reduction in precession-dominated climatic extremes. The observed climate mode switch to decreased environmental variability is consistent with terrestrial and marine records from in and around tropical Africa, but our records provide evidence for dramatically wetter conditions after 70 kyr ago. Such climate change may have stimulated the expansion and migrations of early modern human populations.


Geology | 1993

Estimating the age of formation of lakes: An example from Lake Tanganyika, East African Rift system

Andrew S. Cohen; Michael J. Soreghan; Christopher A. Scholz

Age estimates for ancient lakes are important for determining their histories and their rates of biotic and tectonic evolution. In the absence of dated core material from the lake`s sedimentary basement, several techniques have been used to generate such age estimates. The most common of these, herein called the reflection seismic-radiocarbon method (RSRM), combines estimates of short-term sediment-accumulation rates derived from radiocarbon-dated cores and depth-to-basement estimates derived from reflection-seismic data at or near the same locality to estimate an age to basement. Age estimates form the RSRM suggest that the structural basins of central Lake Tanganyika began to form between 9 and 12 Ma. Estimates for the northern and southern basins are younger (7 to 8 Ma and 2 to 4 Ma, respectively). The diachroneity of estimates for different segments of the lake is equivocal, and may be due to erosional loss of record in the northern and southern structural basins or to progressive opening of the rift. The RSRM age estimates for Lake Tanganyika are considerably younger than most prior estimates and clarify the extensional history of the western branch of the East African Rift system. 31 refs., 3 figs., 1 tab.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Ecological consequences of early Late Pleistocene megadroughts in tropical Africa

Andrew S. Cohen; Jeffery R. Stone; Kristina R. M. Beuning; Lisa E. Park; Peter N. Reinthal; David L. Dettman; Christopher A. Scholz; Thomas C. Johnson; John W. King; Michael R. Talbot; Erik T. Brown; Sarah J. Ivory

Extremely arid conditions in tropical Africa occurred in several discrete episodes between 135 and 90 ka, as demonstrated by lake core and seismic records from multiple basins [Scholz CA, Johnson TC, Cohen AS, King JW, Peck J, Overpeck JT, Talbot MR, Brown ET, Kalindekafe L, Amoako PYO, et al. (2007) Proc Natl Acad Sci USA 104:16416–16421]. This resulted in extraordinarily low lake levels, even in Africas deepest lakes. On the basis of well dated paleoecological records from Lake Malawi, which reflect both local and regional conditions, we show that this aridity had severe consequences for terrestrial and aquatic ecosystems. During the most arid phase, there was extremely low pollen production and limited charred-particle deposition, indicating insufficient vegetation to maintain substantial fires, and the Lake Malawi watershed experienced cool, semidesert conditions (<400 mm/yr precipitation). Fossil and sedimentological data show that Lake Malawi itself, currently 706 m deep, was reduced to an ≈125 m deep saline, alkaline, well mixed lake. This episode of aridity was far more extreme than any experienced in the Afrotropics during the Last Glacial Maximum (≈35–15 ka). Aridity diminished after 95 ka, lake levels rose erratically, and salinity/alkalinity declined, reaching near-modern conditions after 60 ka. This record of lake levels and changing limnological conditions provides a framework for interpreting the evolution of the Lake Malawi fish and invertebrate species flocks. Moreover, this record, coupled with other regional records of early Late Pleistocene aridity, places new constraints on models of Afrotropical biogeographic refugia and early modern human population expansion into and out of tropical Africa.


PALAIOS | 1989

Lacustrine petroleum source rocks

Andrew S. Cohen; A. J. Fleet; K. Kelts; Michael R. Talbot

These proceedings contain 29 papers grouped under the headings of: Tectonic, Geological, Geochemical and Biological framework; Palaeoenvironmental indicators; and Case studies.


Journal of Human Evolution | 2012

The environmental context for the origins of modern human diversity: A synthesis of regional variability in African climate 150,000-30,000 years ago

Margaret Whiting Blome; Andrew S. Cohen; Christian A. Tryon; Alison S. Brooks; Joellen L. Russell

We synthesize African paleoclimate from 150 to 30 ka (thousand years ago) using 85 diverse datasets at a regional scale, testing for coherence with North Atlantic glacial/interglacial phases and northern and southern hemisphere insolation cycles. Two major determinants of circum-African climate variability over this time period are supported by principal components analysis: North Atlantic sea surface temperature (SST) variations and local insolation maxima. North Atlantic SSTs correlated with the variability found in most circum-African SST records, whereas the variability of the majority of terrestrial temperature and precipitation records is explained by local insolation maxima, particularly at times when solar radiation was intense and highly variable (e.g., 150-75 ka). We demonstrate that climates varied with latitude, such that periods of relatively increased aridity or humidity were asynchronous across the northern, eastern, tropical and southern portions of Africa. Comparisons of the archaeological, fossil, or genetic records with generalized patterns of environmental change based solely on northern hemisphere glacial/interglacial cycles are therefore imprecise. We compare our refined climatic framework to a database of 64 radiometrically-dated paleoanthropological sites to test hypotheses of demographic response to climatic change among African hominin populations during the 150-30 ka interval. We argue that at a continental scale, population and climate changes were asynchronous and likely occurred under different regimes of climate forcing, creating alternating opportunities for migration into adjacent regions. Our results suggest little relation between large scale demographic and climate change in southern Africa during this time span, but strongly support the hypothesis of hominin occupation of the Sahara during discrete humid intervals ~135-115 ka and 105-75 ka. Hominin populations in equatorial and eastern Africa may have been buffered from the extremes of climate change by locally steep altitudinal and rainfall gradients and the complex and variable effects of increased aridity on human habitat suitability in the tropics. Our data are consistent with hominin migrations out of Africa through varying exit points from ~140-80 ka.


Evolution | 1991

MORPHOLOGY AND BEHAVIOR OF CRABS AND GASTROPODS FROM LAKE TANGANYIKA, AFRICA: IMPLICATIONS FOR LACUSTRINE PREDATOR-PREY COEVOLUTION

Kelly West; Andrew S. Cohen; Michael Baron

The shells of most lacustrine gastropods are typically small, weakly calcified, and modestly ornamented to unornamented. Similarly, most lacustrine crabs are usually small detritivores with weak chelae. A number of invertebrate taxa in Lake Tanganyika, however, deviate from these generalities. This study explores a predator‐prey coevolution model as an explanation for the large, heavily calcified, and ornate gastropods and the robust, durophagous crabs of Lake Tanganyika.


Geological Society of America Bulletin | 1997

Lake level and paleoenvironmental history of Lake Tanganyika, Africa, as inferred from late Holocene and modern stromatolites

Andrew S. Cohen; Michael R. Talbot; Stanley M. Awramik; David L. Dettman; Paul I. Abell

Fossil and living stromatolites are abundant around the margins of Lake Tanganyika, Africa, and provide a wealth of paleolimnologic and paleoclimatic information for the late Holocene. Six lines of evidence show that stromatolites and cements are precipitating in the lake today: (1) carbonate saturation state calculations, (2) documentation of living stromatolites and their depth distribution, (3) new stable isotope data showing the lake’s present mixing state and ancient evaporation and inflow balance, (4) new radiocarbon data and a reevaluation of apparent 14 C ages derived from Lake Tanganyika carbonates, (5) the presence of modern Mg-calcite cements derived from lake waters, and (6) the presence of modern, biologically mediated Mg-calcite precipitates in the lake. Lake Tanganyika’s lake levels have been remarkably stable over the past 2800 yr, fluctuating around the marginally open to marginally closed level through most of this time period. Lake lowstands and high δ 18 O values from the ninth century B.C. to the early fifth century A.D. indicate that the lake basin was comparatively dry during this time. However, the period prior to the most recent opening of Lake Kivu into the Lake Tanganyika basin (ca. A.D. 550) was not marked by major lake lowstands, nor was this opening accompanied by a dramatic lakelevel rise. The Kivu opening was roughly coincident with a significant shift toward isotopically lighter (δ 18 O and δ 13 C) lake water, which persists today. The lake remained close to its outlet level between the sixth and thirteenth centuries A.D. Lake levels rose between the fourteenth and sixteenth centuries. At some time between the late sixteenth and early nineteenth centuries, lake level fell to perhaps its lowest level in the past 2800 yr. By the early nineteenth century, lake level had begun to rise to the overflow level, apparently the result of a regional increase in precipitation/evaporation ratios. Weak δ 18 O/δ 13 C covariance for late Holocene carbonates suggests that the surface elevation of the lake has remained near the outlet level, with only occasional periods of closure. However, there is no simple relationship between solute input from Lake Kivu, isotope input from Lake Kivu, and lake levels in Lake Tanganyika. Lake Kivu waters are the primary source of major ions in Lake Tanganyika, but are much less important in controlling the δ 18 O and the lake level of Lake Tanganyika. Because the Ruzizi River’s discharge into Lake Tanganyika is largely derived from sources other than Lake Kivu, the overflow events in the two lakes have been uncoupled during the late Holocene.


Geology | 1987

Nearshore carbonate deposits in Lake Tanganyika

Andrew S. Cohen; Catherine Thouin

An exceptionally wide variety of carbonate fades, dominated by high-magnesian calcite, occurs along the littoral and shallow sublittoral zones (<50 m) of Lake Tanganyika in central Africa. These facies include exposed and submerged, calcite-cemented ridges of nearshore terrigenous sand, ooid sand shoals, and lithified oolite ridges, Chara meadows of bioturbated calcareous silts, gastropod shell blankets and related coquinas, and extensive thrombolitic microbial reefs. Though texturally and compositionally similar to many modern and ancient shallow-water marine facies, these deposits record carbonate deposition and cementation in a large, tropical, deep-water lake of tectonic origin. Lithofacies along Lake Tanganyika represent the broadest spectrum of carbonate deposits yet reported from any modern lake and serve as important analogues for lacustrine carbonate sequences in the stratigraphic record.

Collaboration


Dive into the Andrew S. Cohen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan L. Deino

Berkeley Geochronology Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge