Andrey V. Kretinin
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrey V. Kretinin.
Nature Physics | 2014
Colin R. Woods; Liam Britnell; Axel Eckmann; Ruisong Ma; Jianchen Lu; Haiming Guo; Xiao Lin; Geliang Yu; Yang Cao; R. V. Gorbachev; Andrey V. Kretinin; Jaesung Park; L. A. Ponomarenko; M. I. Katsnelson; Yu N. Gornostyrev; Kenji Watanabe; Takashi Taniguchi; Cinzia Casiraghi; Hong-Jun Gao; A. K. Geim; K. S. Novoselov
When a crystal is subjected to a periodic potential, under certain circumstances it can adjust itself to follow the periodicity of the potential, resulting in a commensurate state. Of particular interest are topological defects between the two commensurate phases, such as solitons and domain walls. Here we report a commensurate-incommensurate transition for graphene on top of hexagonal boron nitride (hBN). Depending on the rotation angle between the lattices of the two crystals, graphene can either stretch to adapt to a slightly different hBN periodicity (for small angles, resulting in a commensurate state) or exhibit little adjustment (the incommensurate state). In the commensurate state, areas with matching lattice constants are separated by domain walls that accumulate the generated strain. Such soliton-like objects are not only of significant fundamental interest, but their presence could also explain recent experiments where electronic and optical properties of graphene-hBN heterostructures were observed to be considerably altered.
Science | 2014
R. V. Gorbachev; Justin C. W. Song; Geliang Yu; Andrey V. Kretinin; Freddie Withers; Yang Cao; Artem Mishchenko; I. V. Grigorieva; K. S. Novoselov; L. S. Levitov; A. K. Geim
Making use of graphenes valleys Graphene has two distinct valleys in its electronic structure, in which the electrons have the same energy. Theorists have predicted that creating an asymmetry between the two valleys will coax graphene into exhibiting the so-called valley Hall effect (VHE). In this effect, electrons from the two valleys move across the sample in opposite directions when the experimenters run current along the sample. Gorbachev et al. achieved this asymmetry by aligning graphene with an underlying layer of hexagonalboron nitride (hBN) (see the Perspective by Lundeberg and Folk). The authors measured the transport characteristics of the sample, which were consistent with the theoretical predictions for the VHE. The method may in the future lead to information processing using graphenes valleys. Science, this issue p. 448; see also p. 422 Graphene is aligned with a layer of hexagonal boron nitride to achieve the valley Hall effect. [Also see Perspective by Lundeberg and Folk] Topological materials may exhibit Hall-like currents flowing transversely to the applied electric field even in the absence of a magnetic field. In graphene superlattices, which have broken inversion symmetry, topological currents originating from graphene’s two valleys are predicted to flow in opposite directions and combine to produce long-range charge neutral flow. We observed this effect as a nonlocal voltage at zero magnetic field in a narrow energy range near Dirac points at distances as large as several micrometers away from the nominal current path. Locally, topological currents are comparable in strength with the applied current, indicating large valley-Hall angles. The long-range character of topological currents and their transistor-like control by means of gate voltage can be exploited for information processing based on valley degrees of freedom.
Nano Letters | 2014
Andrey V. Kretinin; Yang Cao; J. S. Tu; Geliang Yu; R. Jalil; K. S. Novoselov; Sarah J. Haigh; Ali Gholinia; Artem Mishchenko; M. Lozada; Thanasis Georgiou; Colin R. Woods; Freddie Withers; P. Blake; Goki Eda; A. Wirsig; C. Hucho; Kenji Watanabe; T. Taniguchi; A. K. Geim; R. V. Gorbachev
Hexagonal boron nitride is the only substrate that has so far allowed graphene devices exhibiting micrometer-scale ballistic transport. Can other atomically flat crystals be used as substrates for making quality graphene heterostructures? Here we report on our search for alternative substrates. The devices fabricated by encapsulating graphene with molybdenum or tungsten disulfides and hBN are found to exhibit consistently high carrier mobilities of about 60 000 cm(2) V(-1) s(-1). In contrast, encapsulation with atomically flat layered oxides such as mica, bismuth strontium calcium copper oxide, and vanadium pentoxide results in exceptionally low quality of graphene devices with mobilities of ∼1000 cm(2) V(-1) s(-1). We attribute the difference mainly to self-cleansing that takes place at interfaces between graphene, hBN, and transition metal dichalcogenides. Surface contamination assembles into large pockets allowing the rest of the interface to become atomically clean. The cleansing process does not occur for graphene on atomically flat oxide substrates.
Nano Letters | 2015
Yang Cao; Artem Mishchenko; Geliang Yu; Ekaterina Khestanova; Aidan P. Rooney; Eric Prestat; Andrey V. Kretinin; P. Blake; Moshe Ben Shalom; Colin R. Woods; J. Chapman; Geetha Balakrishnan; I. V. Grigorieva; K. S. Novoselov; B. A. Piot; M. Potemski; Kenji Watanabe; T. Taniguchi; Sarah J. Haigh; A. K. Geim; R. V. Gorbachev
Many layered materials can be cleaved down to individual atomic planes, similar to graphene, but only a small minority of them are stable under ambient conditions. The rest react and decompose in air, which has severely hindered their investigation and potential applications. Here we introduce a remedial approach based on cleavage, transfer, alignment, and encapsulation of air-sensitive crystals, all inside a controlled inert atmosphere. To illustrate the technology, we choose two archetypal two-dimensional crystals that are of intense scientific interest but are unstable in air: black phosphorus and niobium diselenide. Our field-effect devices made from their monolayers are conductive and fully stable under ambient conditions, which is in contrast to the counterparts processed in air. NbSe2 remains superconducting down to the monolayer thickness. Starting with a trilayer, phosphorene devices reach sufficiently high mobilities to exhibit Landau quantization. The approach offers a venue to significantly expand the range of experimentally accessible two-dimensional crystals and their heterostructures.
Nano Letters | 2009
Hadas Shtrikman; Ronit Popovitz-Biro; Andrey V. Kretinin; Lothar Houben; M. Heiblum; M. Bukala; Marta Galicka; R. Buczko; P. Kacman
The growth of wurtzite GaAs and InAs nanowires with diameters of a few tens of nanometers with negligible intermixing of zinc blende stacking is reported. The suppression of the number of stacking faults was obtained by a procedure within the vapor-liquid-solid growth, which exploits the theoretical result that nanowires of small diameter ( approximately 10 nm) adopt purely wurtzite structure and are observed to thicken (via lateral growth) once the axial growth exceeds a certain length.
Nature Communications | 2015
Peining Li; Martin Lewin; Andrey V. Kretinin; Joshua D. Caldwell; K. S. Novoselov; Takashi Taniguchi; Kenji Watanabe; Fabian Gaussmann; Thomas Taubner
Hyperbolic materials exhibit sub-diffractional, highly directional, volume-confined polariton modes. Here we report that hyperbolic phonon polaritons allow for a flat slab of hexagonal boron nitride to enable exciting near-field optical applications, including unusual imaging phenomenon (such as an enlarged reconstruction of investigated objects) and sub-diffractional focusing. Both the enlarged imaging and the super-resolution focusing are explained based on the volume-confined, wavelength dependent propagation angle of hyperbolic phonon polaritons. With advanced infrared nanoimaging techniques and state-of-art mid-infrared laser sources, we have succeeded in demonstrating and visualizing these unexpected phenomena in both Type I and Type II hyperbolic conditions, with both occurring naturally within hexagonal boron nitride. These efforts have provided a full and intuitive physical picture for the understanding of the role of hyperbolic phonon polaritons in near-field optical imaging, guiding, and focusing applications.
Nano Letters | 2009
Hadas Shtrikman; Ronit Popovitz-Biro; Andrey V. Kretinin; M. Heiblum
Stacking-faults-free zinc blende GaAs nanowires have been grown by molecular beam epitaxy using the vapor-liquid-solid gold assisted growth method. Two different approaches were used to obtain continuous low supersaturation in the vicinity of the growing wires. A double distribution of gold droplets on the (111)B surface in the first case, and a highly terraced (311)B growth surface in the second case both avoided the commonly observed transition to wurtzite structure.
Nature Physics | 2014
Geliang Yu; R. V. Gorbachev; J. S. Tu; Andrey V. Kretinin; Yang Cao; R. Jalil; Freddie Withers; L. A. Ponomarenko; B. A. Piot; M. Potemski; D. C. Elias; Xi Chen; Kenji Watanabe; Takashi Taniguchi; I. V. Grigorieva; K. S. Novoselov; Vladimir I. Fal'ko; A. K. Geim; Artem Mishchenko
Graphene on boron nitride gives rise to a moire superlattice displaying the Hofstadter butterfly: a fractal dependence of energy bands on external magnetic fields. Now, by means of capacitance spectroscopy, further aspects of this system are revealed—most notably, suppression of quantum Hall antiferromagnetism at particular commensurate magnetic fluxes.
Nature Physics | 2016
M. Ben Shalom; Mengjian Zhu; V. I. Fal’ko; Artem Mishchenko; Andrey V. Kretinin; K. S. Novoselov; Colin R. Woods; Kenji Watanabe; Takashi Taniguchi; A. K. Geim; Jonathan Prance
Josephson junctions based on graphene exhibit tunable proximity effects. The appearance of superconducting states when changing magnetic field and carrier concentration has now been investigated—some proximity effect survives for fields above 1 T.
Nature Communications | 2012
Anindya Das; Yuval Ronen; M. Heiblum; Diana Mahalu; Andrey V. Kretinin; Hadas Shtrikman
Entanglement is at the heart of the Einstein-Podolsky-Rosen paradox, where the non-locality is a necessary ingredient. Cooper pairs in superconductors can be split adiabatically, thus forming entangled electrons. Here, we fabricate such an electron splitter by contacting an aluminium superconductor strip at the centre of a suspended InAs nanowire. The nanowire is terminated at both ends with two normal metallic drains. Dividing each half of the nanowire by a gate-induced Coulomb blockaded quantum dot strongly impeds the flow of Cooper pairs due to the large charging energy, while still permitting passage of single electrons. We provide conclusive evidence of extremely high efficiency Cooper pair splitting via observing positive two-particle correlations of the conductance and the shot noise of the split electrons in the two opposite drains of the nanowire. Moreover, the actual charge of the injected quasiparticles is verified by shot noise measurements.