Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simranpreet Kaur is active.

Publication


Featured researches published by Simranpreet Kaur.


Experimental Hematology | 2014

Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80(+)VCAM1(+)CD169(+)ER-HR3(+)Ly6G(+) erythroid island macrophages in the mouse.

Rebecca Jacobsen; Catherine E. Forristal; Liza J. Raggatt; Bianca Nowlan; Valerie Barbier; Simranpreet Kaur; Nico van Rooijen; Ingrid G. Winkler; Allison R. Pettit; Jean-Pierre Levesque

Similarly to other tissues, the bone marrow contains subsets of resident tissue macrophages, which are essential to maintain bone formation, functional hematopoietic stem cell (HSC) niches, and erythropoiesis. Pharmacologic doses of granulocyte colony-stimulating factor (G-CSF) mobilize HSC in part by interfering with the HSC niche-supportive function of BM resident macrophages. Because bone marrow macrophages are key to both maintenance of HSC within their niche and erythropoiesis, we investigated the effect of mobilizing doses of G-CSF on erythropoiesis in mice. We now report that G-CSF blocks medullar erythropoiesis by depleting the erythroid island macrophages we identified as co-expressing F4/80, vascular cell adhesion molecule-1, CD169, Ly-6G, and the ER-HR3 erythroid island macrophage antigen. Both broad macrophage depletion, achieved by injecting clodronate-loaded liposomes, and selective depletion of CD169(+) macrophages, also concomitantly depleted F4/80(+)VCAM-1(+)CD169(+)ER-HR3(+)Ly-6G(+) erythroid island macrophages and blocked erythropoiesis. This more precise phenotypic definition of erythroid island macrophages will enable studies on their biology and function in normal settings and on diseases associated with anemia. Finally, this study further illustrates that macrophages are a potent relay of innate immunity and inflammation on bone, hematopoietic, and erythropoietic maintenance. Agents that affect these macrophages, such as G-CSF, are likely to affect these three processes concomitantly.


Seminars in Cell & Developmental Biology | 2017

Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches

Simranpreet Kaur; Liza J. Raggatt; Lena Batoon; David A. Hume; Jean-Pierre Levesque; Allison R. Pettit

Macrophages, named for their phagocytic ability, participate in homeostasis, tissue regeneration and inflammatory responses. Bone and adjacent marrow contain multiple functionally unique resident tissue macrophage subsets which maintain and regulate anatomically distinct niche environments within these interconnected tissues. Three subsets of bone-bone marrow resident tissue macrophages have been characterised; erythroblastic island macrophages, haematopoietic stem cell niche macrophages and osteal macrophages. The role of these macrophages in controlling homeostasis and repair in bone and bone marrow niches is reviewed in detail.


American Journal of Pathology | 2013

Absence of B cells does not compromise intramembranous bone formation during healing in a tibial injury model.

Liza J. Raggatt; Kylie A. Alexander; Simranpreet Kaur; Andy C.K. Wu; Kelli P. A. MacDonald; Allison R. Pettit

Previous studies have generated conflicting results regarding the contribution of B cells to bone formation during physiology and repair. Here, we have investigated the role of B cells in osteoblast-mediated intramembranous anabolic bone modeling. Immunohistochemistry for CD45 receptor expression indicated that B cells had no propensity or aversion for endosteal regions or sites of bone modeling and/or remodeling in wild-type mice. In the endocortical diaphyseal region, quantitative immunohistology demonstrated that young wild-type and B-cell deficient mice had similar amounts of osteocalcin(+) osteoblast bone modeling surface. The degree of osteoblast-associated osteomac canopy was also comparable in these mice inferring that bone modeling cellular units were preserved in the absence of B cells. In a tibial injury model, only rare CD45 receptor positive B cells were located within areas of high anabolic activity, including minimal association with osterix(+) osteoblast-lineage committed mesenchymal cells in wild-type mice. Quantitative immunohistology demonstrated that collagen type I matrix deposition and macrophage and osteoclast distribution within the injury site were not compromised by the absence of B cells. Overall, osteoblast distribution during normal growth and bone healing via intramembranous ossification proceeded normally in the absence of B cells. These observations support that in vivo, these lymphoid cells have minimal influence, or at most, make redundant contributions to osteoblast function during anabolic bone modeling via intramembranous mechanisms.


Biomaterials | 2017

CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair

Lena Batoon; Susan Millard; Martin E. Wullschleger; Corina Preda; Andy C.K. Wu; Simranpreet Kaur; Hsu-Wen Tseng; David A. Hume; Jean-Pierre Levesque; Liza J. Raggatt; Allison R. Pettit

Osteal macrophages (osteomacs) contribute to bone homeostasis and regeneration. To further distinguish their functions from osteoclasts, which share many markers and growth factor requirements, we developed a rapid, enzyme-free osteomac enrichment protocol that permitted characterization of minimally manipulated osteomacs by flow cytometry. Osteomacs differ from osteoclasts in expression of Siglec1 (CD169). This distinction was confirmed using the CD169-diphtheria toxin (DT) receptor (DTR) knock-in model. DT treatment of naïve CD169-DTR mice resulted in selective and striking loss of osteomacs, whilst osteoclasts and trabecular bone area were unaffected. Consistent with a previously-reported trophic interaction, osteomac loss was accompanied by a concomitant and proportionately striking reduction in osteoblasts. The impact of CD169+ macrophage depletion was assessed in two models of bone injury that heal via either intramembranous (tibial injury) or endochondral (internally-plated femoral fracture model) ossification. In both models, CD169+ macrophage, including osteomac depletion compromised bone repair. Importantly, DT treatment in CD169-DTR mice did not affect osteoclast frequency in either model. In the femoral fracture model, the magnitude of callus formation correlated with the number of F4/80+ macrophages that persisted within the callus. Overall these observations provide compelling support that CD169+ osteomacs, independent of osteoclasts, provide vital pro-anabolic support to osteoblasts during both bone homeostasis and repair.


Blood | 2018

Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment

Simranpreet Kaur; Liza-Jane Raggatt; Susan Millard; Andy C.K. Wu; Lena Batoon; Rebecca Jacobsen; Ingrid G. Winkler; Kelli P. A. MacDonald; Andrew C. Perkins; David A. Hume; Jean-Pierre Levesque; Allison R. Pettit

Distinct subsets of resident tissue macrophages are important in hematopoietic stem cell niche homeostasis and erythropoiesis. We used a myeloid reporter gene (Csf1r-eGFP) to dissect the persistence of bone marrow and splenic macrophage subsets following lethal irradiation and autologous hematopoietic stem cell transplantation in a mouse model. Multiple recipient bone marrow and splenic macrophage subsets survived after autologous hematopoietic stem cell transplantation with organ-specific persistence kinetics. Short-term persistence (5 weeks) of recipient resident macrophages in spleen paralleled the duration of extramedullary hematopoiesis. In bone marrow, radiation-resistant recipient CD169+ resident macrophages and erythroid-island macrophages self-repopulated long-term after transplantation via autonomous cell division. Posttransplant peak expansion of recipient CD169+ resident macrophage number in bone marrow aligned with the persistent engraftment of phenotypic long-term reconstituting hematopoietic stem cells within bone marrow. Selective depletion of recipient CD169+ macrophages significantly compromised the engraftment of phenotypic long-term reconstituting hematopoietic stem cells and consequently impaired hematopoietic reconstitution. Recipient bone marrow resident macrophages are essential for optimal hematopoietic stem cell transplantation outcomes and could be an important consideration in the development of pretransplant conditioning therapies and/or chemoresistance approaches.


European Journal of Immunology | 2016

Recipient bone marrow (BM) macrophages (Macs) are vital for haematopoietic stem cell (HSC) engraftment post autologous transplantation

Simranpreet Kaur; Liza J. Raggatt; Rebecca Jacobsen; Susan Millard; Lena Batoon; Ingrid G. Winkler; Kelli P. A. MacDonald; Andrew C. Perkins; David A. Hume; Jean-Pierre Levesque; Allison R. Pettit

CD4+Foxp3+ regulatory T cells (Tregs) are the main regulators of peripheral tolerance and prevent the development of fatal autoimmune disease in humans and mice. Furthermore, Tregs have also been implicated in suppressing anti-tumour immune responses and are often enriched at sites of primary and metastatic tumours. While studies have shown the effect of Treg ablation on the control of primary tumours, few studies have examined their contribution to metastasis progression. In this thesis I hypothesised that the depletion of Tregs could promote control over metastasis. To address this, a highly metastatic murine mammary carcinoma cell line 4T1 was injected into transgenic mice expressing the diphtheria toxin receptor in Foxp3+ cells. Foxp3+ cells were depleted by administration of diphtheria toxin and the impact of this on growth of primary tumours and metastases was assessed and measured in vitro clonogenic assays. Results of these experiments indicated that Tregdepletion led to control of primary tumour growth and in some mice to control of metastases. Control of metastases was linked to control of primary tumour growth. In order to measure metastasis in vivo, a PET/CT imaging technique was optimized. Primary tumours and large metastatic nodules were successfully imaged in mice using F18 FDG as a radiotracer. However, the studies described herein revealed that micrometastases in mouse lungs were too small to be reliably identified using PET data parameters. CT imaging did however enable detection of increases in tissue density within the lungs, which was suggestive of micrometastases. Data obtained in this way also indicated that Treg-depletion promotes control of metastasis in some mice. Collectively, the findings described in this thesis indicate that Tregdepletion can contribute to control of metastatic disease and should therefore represent an important component of novel immunotherapies.Changes in microbiome, mucosal immunity and intestinal integrity have been associated with the onset of Type 1 Diabetes (T1D) in children. Toll-like Receptors (TLR) have been associated all three factors. The role of TLR and their effects on microbiome in autoimmunity were studied by crossing TLR1,2,4,6,9 and MyD88 targeted deficiency mutations to the type 1 diabetes (T1D)-prone NOD mouse strain. While NOD.Tlr9-/- and NOD.Tlr6-/- mice were unaffected, T1D in NOD.Tlr4-/- and NOD.Tlr1-/- mice was exacerbated and that in NOD.Myd88-/- and NOD.Tlr2-/- mice ameliorated. Physical parameters of the intestines were compared; ileal weight was reduced in NOD.Tlr1-/-mice. Similarly, by histology, these mice had reduced villus length and width. The intestinal microbiomes of NOD wild-type (WT), NOD.Tlr1-/-, NOD.Tlr2-/- and NOD.Tlr4-/- mice were compared by high throughput sequencing of 16S ribosomal DNA (rDNA), in two cohorts, 18 months apart. Analysis of caecal 16S sequences clearly resolved the mouse lines and there were significant differences in beta diversity between the strains, with individual bacterial species contributing greatly to the differences in the microbiota of individual TLR-deficient strains. To test the relationship between microbiome and T1D, all strains were re-derived onto the parental NOD/Lt line and the incidence of T1D re-assessed within two generations. All rederived lines expressed an incidence of disease similar to that of the parental line. TLR deficiencies are associated with changes in microbiome; changes of microbiome are associated with T1D; the effects of TLR deficiencies on T1D appear to be mediated by their effects on gut flora.Intestinal TCRb+CD4-CD8b-CD8a+ (CD8aa) IELs alleviate T cell induced colitis and have been suggested to play a role in virus infection and cancer. Their thymic development has been elucidated to some extent, as IEL precursors (IELp) are known to be CD4-CD8-CD5+TCRb+, but is not yet fully understood. Within the thymus, mature IELp were identified based on their expression of CD122 and MHC class I. Two major phenotypic subsets exist within this mature thymic IELp population: a PD1+Tbet- population that preferentially expresses a4b7, and a PD1-Tbet+ population with preferential CD103 expression. These two populations were also distinct in their Valpha repertoire. The PD1+a4b7+ population contains clones that are strongly self-reactive as judged by Nur77GFP and their dramatic increase in Bim deficient mice, while the PD1-Tbet+ population did not show these characteristics. Both gave rise to CD8aa IELs upon adoptive transfer into RAG-/- recipients. However intrathymic labeling revealed that PD1+a4b7+ IELp were the major thymic emigrating population, and emigration was S1P1-dependent. In contrast, PD1-Tbet+ IELp expressed CXCR3, were retained, and accumulated in the thymus with age. Preliminary immunofluorescence data furthermore indicate differential thymic cortico-medullary localization of the IELp subtypes. These experiments more precisely define the behavior of IEL precursors.


BMC Musculoskeletal Disorders | 2013

Expression profiling in spondyloarthropathy synovial biopsies highlights changes in expression of inflammatory genes in conjunction with tissue remodelling genes

Gethin P. Thomas; Ran Duan; Allison R. Pettit; Helen Weedon; Simranpreet Kaur; Malcolm D. Smith; Matthew A. Brown


Archive | 2018

The role of macrophages in facilitating haematopoietic stem cell engraftment and reconstitution

Simranpreet Kaur


Experimental Hematology | 2018

Self-Repopulating Recipient Bone Marrow Recipient Macrophages Promote Hematopoietic Stem Cell Engraftment Post Autologous Transplantation

Allison R. Pettit; Simranpreet Kaur; Liza J. Raggatt; Susan Millard; Andy C.K. Wu; Lena Batoon; Rebecca Jacobsen; Ingrid G. Winkler; Kelli P. A. MacDonald; Andrew C. Perkins; David A. Hume; Jean-Pierre Levesque


Experimental Hematology | 2016

Radio-resistant recipient bone marrow (BM) macrophages (MACS) are necessary for hematopoietic stem cell (HSC) engraftment post transplantation

Jean-Pierre Levesque; Simranpreet Kaur; Rebecca Jacobsen; Susan Millard; Lena Batoon; Ingrid G. Winkler; Kelli P. A. MacDonald; Andrew C. Perkins; David A. Hume; Liza J. Raggatt; Allison R. Pettit

Collaboration


Dive into the Simranpreet Kaur's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Millard

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy C.K. Wu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lena Batoon

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge