Joanna Koziel
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joanna Koziel.
PLOS ONE | 2008
Malgorzata Kubica; Krzysztof Guzik; Joanna Koziel; Mirosław Zarębski; Walter Richter; Barbara Gajkowska; Anna Golda; Agnieszka Maciag-Gudowska; Klaudia Brix; Les Shaw; Timothy J. Foster; Jan Potempa
Although considered to be an extracellular pathogen, Staphylococcus aureus is able to invade a variety of mammalian, non-professional phagocytes and can also survive engulfment by professional phagocytes such as neutrophils and monocytes. In both of these cell types S. aureus promptly escapes from the endosomes/phagosomes and proliferates within the cytoplasm, which quickly leads to host cell death. In this report we show that S. aureus interacted with human monocyte-derived macrophages in a very different way to those of other mammalian cells. Upon phagocytosis by macrophages, S. aureus persisted intracellularly in vacuoles for 3–4 days before escaping into the cytoplasm and causing host cell lysis. Until the point of host cell lysis the infected macrophages showed no signs of apoptosis or necrosis and were functional. They were able to eliminate intracellular staphylococci if prestimulated with interferon-γ at concentrations equivalent to human therapeutic doses. S. aureus survival was dependent on the alternative sigma factor B as well as the global regulator agr, but not SarA. Furthermore, isogenic mutants deficient in α-toxin, the metalloprotease aureolysin, protein A, and sortase A were efficiently killed by macrophages upon phagocytosis, although with different kinetics. In particular α-toxin was a key effector molecule that was essential for S. aureus intracellular survival in macrophages. Together, our data indicate that the ability of S. aureus to survive phagocytosis by macrophages is determined by multiple virulence factors in a way that differs considerably from its interactions with other cell types. S. aureus persists inside macrophages for several days without affecting the viability of these mobile cells which may serve as vehicles for the dissemination of infection.
PLOS Pathogens | 2013
Katarzyna Maresz; Annelie Hellvard; Aneta Sroka; Karina Adamowicz; Ewa Bielecka; Joanna Koziel; Katarzyna Gawron; Danuta Mizgalska; Katarzyna Marcińska; Małgorzata Benedyk; Krzysztof Pyrc; Anne-Marie Quirke; Roland Jonsson; Saba Alzabin; Patrick J. Venables; Ky-Anh Nguyen; Piotr Mydel; Jan Potempa
Rheumatoid arthritis and periodontitis are two prevalent chronic inflammatory diseases in humans and are associated with each other both clinically and epidemiologically. Recent findings suggest a causative link between periodontal infection and rheumatoid arthritis via bacteria-dependent induction of a pathogenic autoimmune response to citrullinated epitopes. Here we showed that infection with viable periodontal pathogen Porphyromonas gingivalis strain W83 exacerbated collagen-induced arthritis (CIA) in a mouse model, as manifested by earlier onset, accelerated progression and enhanced severity of the disease, including significantly increased bone and cartilage destruction. The ability of P. gingivalis to augment CIA was dependent on the expression of a unique P. gingivalis peptidylarginine deiminase (PPAD), which converts arginine residues in proteins to citrulline. Infection with wild type P. gingivalis was responsible for significantly increased levels of autoantibodies to collagen type II and citrullinated epitopes as a PPAD-null mutant did not elicit similar host response. High level of citrullinated proteins was also detected at the site of infection with wild-type P. gingivalis. Together, these results suggest bacterial PAD as the mechanistic link between P. gingivalis periodontal infection and rheumatoid arthritis.
Current Rheumatology Reports | 2014
Joanna Koziel; Piotr Mydel; Jan Potempa
Porphyromonas gingivalis is a leading pathogen in chronic periodontitis, a disease process involving progressive destruction of the tissues that support the teeth. Recently, the organism has been reported to produce a unique bacterial enzyme, P. gingivalis peptidyl-arginine deiminase (PPAD), which has the ability to convert arginine residues in proteins to citrulline. Protein citrullination alters protein structure and function; hence, PPAD may be involved in deregulation of the host’s signalling network and immune evasion. Further, accumulating evidence suggests a role for autoimmunity against citrullinated proteins in the development of rheumatoid arthritis (RA). As inflammatory conditions in the lungs of cigarette smokers contribute to the breakdown of immune tolerance to citrullinated epitopes, chronic exposure to citrullinated proteins at periodontitis sites may also predispose susceptible individuals to the development of autoantibodies and the initiation of RA. In this review, we discuss evidence that PPAD may represent a mechanistic link between periodontitis and RA, diseases that are known to be significantly associated at the epidemiological level.
PLOS ONE | 2009
Joanna Koziel; Agnieszka Maciag-Gudowska; Tomasz Mikolajczyk; Małgorzata Bzowska; Daniel E. Sturdevant; Adeline R. Whitney; Lindsey N. Shaw; Frank R. DeLeo; Jan Potempa
It is becoming increasingly apparent that Staphylococcus aureus are able to survive engulfment by macrophages, and that the intracellular environment of these host cells, which is essential to innate host defenses against invading microorganisms, may in fact provide a refuge for staphylococcal survival and dissemination. Based on this, we postulated that S. aureus might induce cytoprotective mechanisms by changing gene expression profiles inside macrophages similar to obligate intracellular pathogens, such as Mycobacterium tuberculosis. To validate our hypothesis we first ascertained whether S. aureus infection could affect programmed cell death in human (hMDMs) and mouse (RAW 264.7) macrophages and, specifically, protect these cells against apoptosis. Our findings indicate that S. aureus-infected macrophages are more resistant to staurosporine-induced cell death than control cells, an effect partly mediated via the inhibition of cytochrome c release from mitochondria. Furthermore, transcriptome analysis of human monocyte-derived macrophages during S. aureus infection revealed a significant increase in the expression of antiapoptotic genes. This was confirmed by quantitative RT-PCR analysis of selected genes involved in mitochondria-dependent cell death, clearly showing overexpression of BCL2 and MCL1. Cumulatively, the results of our experiments argue that S. aureus is able to induce a cytoprotective effect in macrophages derived from different mammal species, which can prevent host cell elimination, and thus allow intracellular bacterial survival. Ultimately, it is our contention that this process may contribute to the systemic dissemination of S. aureus infection.
Microbiology | 2011
Stacey L. Kolar; Vijayaraj Nagarajan; Anna Oszmiana; Frances E. Rivera; Halie K. Miller; Jessica E. Davenport; James T. Riordan; Jan Potempa; David S. Barber; Joanna Koziel; Mohamed O. Elasri; Lindsey N. Shaw
Staphylococcus aureus possesses 16 two-component systems (TCSs), two of which (GraRS and NsaRS) belong to the intramembrane-sensing histidine kinase (IM-HK) family, which is conserved within the firmicutes. NsaRS has recently been documented as being important for nisin resistance in S. aureus. In this study, we present a characterization of NsaRS and reveal that, as with other IM-HK TCSs, it responds to disruptions in the cell envelope. Analysis using a lacZ reporter-gene fusion demonstrated that nsaRS expression is upregulated by a variety of cell-envelope-damaging antibiotics, including phosphomycin, ampicillin, nisin, gramicidin, carbonyl cyanide m-chlorophenylhydrazone and penicillin G. Additionally, we reveal that NsaRS regulates a downstream transporter NsaAB during nisin-induced stress. NsaS mutants also display a 200-fold decreased ability to develop resistance to the cell-wall-targeting antibiotic bacitracin. Microarray analysis reveals that the transcription of 245 genes is altered in an nsaS mutant, with the vast majority being downregulated. Included within this list are genes involved in transport, drug resistance, cell envelope synthesis, transcriptional regulation, amino acid metabolism and virulence. Using inductively coupled plasma-MS we observed a decrease in intracellular divalent metal ions in an nsaS mutant when grown under low abundance conditions. Characterization of cells using electron microscopy reveals that nsaS mutants have alterations in cell envelope structure. Finally, a variety of virulence-related phenotypes are impaired in nsaS mutants, including biofilm formation, resistance to killing by human macrophages and survival in whole human blood. Thus, NsaRS is important in sensing cell damage in S. aureus and functions to reprogram gene expression to modify cell envelope architecture, facilitating adaptation and survival.
Journal of Innate Immunity | 2010
Joanna Koziel; Aabdulkarim Y. Karim; Kornelia Przybyszewska; Miroslaw Ksiazek; Maria Rapala-Kozik; Ky-Anh Nguyen; Jan Potempa
Tannerella forsythia is a gram-negative bacterium strongly associated with the development and/or progression of periodontal disease. Here, we have shown that a newly characterized matrix metalloprotease-like enzyme, referred to as karilysin, efficiently cleaved the antimicrobial peptide LL-37, significantly reducing its bactericidal activity. This may contribute to the resistance of T. forsythia to the antibacterial activity of LL-37, since their vitality was found not to be affected by LL-37 at concentrations up to 2.2 µM. Furthermore, proteolysis of LL-37 by karilysin not only abolished its ability to bind lipopolysaccharide (LPS) to quench endotoxin-induced proinflammatory activity, but LL-37 cleavage also caused the release of active endotoxin from the LPS/LL-37 complex. Proteolytic inactivation of LL-37 bactericidal activity by karilysin may protect LL-37-sensitive species in the subgingival plaque and maintain the local inflammatory reaction driven by LPS from gram-negative bacteria. Consequently, the karilysin protease may directly contribute to periodontal tissue damage and the development and/or progression of chronic periodontitis.
Infection and Immunity | 2013
Krzysztof Pyrc; Aleksandra Milewska; Tomasz Kantyka; Aneta Sroka; Katarzyna Maresz; Joanna Koziel; Ky-Anh Nguyen; Jan J. Enghild; Anders Dahl Knudsen; Jan Potempa
ABSTRACT Porphyromonas gingivalis is a Gram-negative bacterium associated with the development of periodontitis. The evolutionary success of this pathogen results directly from the presence of numerous virulence factors, including peptidylarginine deiminase (PPAD), an enzyme that converts arginine to citrulline in proteins and peptides. Such posttranslational modification is thought to affect the function of many different signaling molecules. Taking into account the importance of tissue remodeling and repair mechanisms for periodontal homeostasis, which are orchestrated by ligands of the epidermal growth factor receptor (EGFR), we investigated the ability of PPAD to distort cross talk between the epithelium and the epidermal growth factor (EGF) signaling pathway. We found that EGF preincubation with purified recombinant PPAD, or a wild-type strain of P. gingivalis, but not with a PPAD-deficient isogenic mutant, efficiently hindered the ability of the growth factor to stimulate epidermal cell proliferation and migration. In addition, PPAD abrogated EGFR-EGF interaction-dependent stimulation of expression of suppressor of cytokine signaling 3 and interferon regulatory factor 1. Biochemical analysis clearly showed that the PPAD-exerted effects on EGF activities were solely due to deimination of the C-terminal arginine. Interestingly, citrullination of two internal Arg residues with human endogenous peptidylarginine deiminases did not alter EFG function, arguing that the C-terminal arginine is essential for EGF biological activity. Cumulatively, these data suggest that the PPAD-activity-abrogating EGF function in gingival pockets may at least partially contribute to tissue damage and delayed healing within P. gingivalis-infected periodontia.
International Journal of Nanomedicine | 2013
Piotr Konieczny; Anna Grazyna Goralczyk; Radoslaw Szmyd; Lukasz Skalniak; Joanna Koziel; Francesca Larese Filon; Matteo Crosera; Agnieszka Cierniak; Ewa K. Zuba-Surma; Julia Borowczyk; Eliza Laczna; Justyna Drukala; Elzbieta Pyza; Danuta Semik; Olga Woznicka; Andrzej Klein; Jolanta Jura
The platinum (Pt)-group elements (PGEs) represent a new kind of environmental pollutant and a new hazard for human health. Since their introduction as vehicle-exhaust catalysts, their emissions into the environment have grown considerably compared with their low natural concentration in the earth crust. PGE emissions from vehicle catalysts can be also in the form of nanometer-sized particles (Pt nanoparticles [PtNPs]). These elements, both in their metallic form or as ions solubilized in biological media, are now recognized as potent allergens and sensitizers. Human skin is always exposed to toxic particles; therefore, in the present study we addressed the question of whether polyvinylpyrrolidone-coated PtNPs may have any negative effects on skin cells, including predominantly epidermal keratinocytes. In this study, PtNPs of two sizes were used: 5.8 nm and 57 nm, in concentrations of 6.25, 12.5, and 25 μg/mL. Both types of NPs were protected with polyvinylpyrrolidone. Primary keratinocytes were treated for 24 and 48 hours, then cytotoxicity, genotoxicity, morphology, metabolic activity, and changes in the activation of signaling pathways were investigated in PtNP-treated cells. We found that PtNPs trigger toxic effects on primary keratinocytes, decreasing cell metabolism, but these changes have no effects on cell viability or migration. Moreover, smaller NPs exhibited more deleterious effect on DNA stability than the big ones. Analyzing activation of caspases, we found changes in activity of caspase 9 and caspase 3/7 triggered mainly by smaller NPs. Changes were not so significant in the case of larger nanoparticles. Importantly, we found that PtNPs have antibacterial properties, as is the case with silver NPs (AgNPs). In comparison to our previous study regarding the effects of AgNPs on cell biology, we found that PtNPs do not exhibit such deleterious effects on primary keratinocytes as AgNPs and that they also can be used as potential antibacterial agents, especially in the treatment of Escherichia coli, representing a group of Gram-negative species.
Nature Reviews Rheumatology | 2017
Jan Potempa; Piotr Mydel; Joanna Koziel
Rheumatoid arthritis (RA), an autoimmune disease that affects ∼1% of the human population, is driven by autoantibodies that target modified self-epitopes, whereas ∼11% of the global adult population are affected by severe chronic periodontitis, a disease in which the commensal microflora on the tooth surface is replaced by a dysbiotic consortium of bacteria that promote the chronic inflammatory destruction of periodontal tissue. Despite differences in aetiology, RA and periodontitis are similar in terms of pathogenesis; both diseases involve chronic inflammation fuelled by pro-inflammatory cytokines, connective tissue breakdown and bone erosion. The two diseases also share risk factors such as smoking and ageing, and have strong epidemiological, serological and clinical associations. In light of the ground-breaking discovery that Porphyromonas gingivalis, a pivotal periodontal pathogen, is the only human pathogen known to express peptidylarginine deiminase, an enzyme that generates citrullinated epitopes that are recognized by anti-citrullinated protein antibodies, a new paradigm is emerging. In this Review, the clinical and experimental evidence supporting this paradigm is discussed and the potential mechanisms involved in linking periodontitis to RA are presented.
Journal of Immunology | 2014
Joanna Koziel; Danuta Bryzek; Aneta Sroka; Katarzyna Maresz; Izabela Glowczyk; Ewa Bielecka; Tomasz Kantyka; Krzysztof Pyrc; Pavel Svoboda; Jan Pohl; Jan Potempa
Cathelicidin LL-37 plays an essential role in innate immunity by killing invading microorganisms and regulating the inflammatory response. These activities depend on the cationic character of the peptide, which is conferred by arginine and lysine residues. At inflammatory foci in vivo, LL-37 is exposed to peptidyl arginine deiminase (PAD), an enzyme released by inflammatory cells. Therefore, we hypothesized that PAD-mediated citrullination of the arginine residues within LL-37 will abrogate its immunomodulatory functions. We found that, when citrullinated, LL-37 was at least 40 times less efficient at neutralizing the proinflammatory activity of LPS due to a marked decrease in its affinity for endotoxin. Also, the ability of citrullinated LL-37 to quench macrophage responses to lipoteichoic acid and poly(I:C) signaling via TLR2 and TLR3, respectively, was significantly reduced. Furthermore, in stark contrast to native LL-37, the modified peptide completely lost the ability to prevent morbidity and mortality in a mouse model of d-galactosamine–sensitized endotoxin shock. In fact, administration of citrullinated LL-37 plus endotoxin actually exacerbated sepsis due to the inability of LL-37 to neutralize LPS and the subsequent enhancement of systemic inflammation due to increased serum levels of IL-6. Importantly, serum from septic mice showed increased PAD activity, which strongly correlated with the level of citrullination, indicating that PAD-driven protein modification occurs in vivo. Because LL-37 is a potential treatment for sepsis, its administration should be preceded by a careful analysis to ensure that the citrullinated peptide is not generated in treated patients.