Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela Landolfi is active.

Publication


Featured researches published by Angela Landolfi.


Global Biogeochemical Cycles | 2009

Distribution of dissolved organic nutrients and their effect on export production over the Atlantic Ocean

Sinhue Torres-Valdes; Vassil Roussenov; Richard Sanders; S. Reynolds; Xi Pan; Rhiannon L. Mather; Angela Landolfi; George A. Wolff; Eric P. Achterberg; Richard G. Williams

[1] A synthesis is provided of dissolved organic nitrogen (DON) and phosphorus (DOP) distributions over the Atlantic Ocean based upon field data from eight recent transects, six meridional between 50°N and 50°S and two zonal at 24° and 36°N. Over the entire tropical and subtropical Atlantic, DON and DOP provide the dominant contributions to total nitrogen and phosphorus pools for surface waters above the thermocline. Elevated DON and DOP concentrations (>5 and >0.2 μmol L−1, respectively) occur in surface waters on the eastern side of the North Atlantic subtropical gyre and equatorial sides of both the North and South Atlantic subtropical gyres, while particularly low concentrations of DOP (<0.05 μmol L−1) occur over the northern flank of the North Atlantic subtropical gyre along 36°N. This distribution is consistent with organic nutrients formed at the gyre margins supporting carbon export as they are redistributed via the gyre circulation. The effect of DON and DOP transport and cycling on export production is examined in an eddy-permitting, coupled physical and nutrient model integrated for 40 years: organic nutrients are produced in the upwelling zones off North Africa and transferred laterally into the gyre interior, facilitated in part by the mesoscale eddy circulation, as well as fluxed northward from the tropics as part of the overturning circulation. Inputs of semilabile DON and DOP to the tropical and subtropical Atlantic Ocean play an important role in sustaining up to typically 40 and 70% of the modeled particulate N and P export, particularly on the eastern and equatorward sides of the subtropical gyres.


Global Biogeochemical Cycles | 2007

How widespread and important is N2 fixation in the North Atlantic Ocean

Sarah E. Reynolds; Rhiannon L. Mather; George A. Wolff; Richard G. Williams; Angela Landolfi; Richard Sanders; E. Malcolm S. Woodward

The spatial extent of N2 fixation in the Atlantic Ocean is examined by determining the isotopic composition of N in suspended particulate organic nitrogen (δ15N PONsusp). The samples were collected from zonal and meridional transects of the Atlantic Ocean during a 3-year period. There is a consistent depleted δ15N PONsusp signal extending over the center of the northern subtropical gyre, which partly coincides with a region where the tracer N* increases westward following the gyre circulation. This nonconservative behavior of N* implies that N2 fixation is responsible for the depleted δ15N PONsusp. A mixing model suggests that N2 fixation over parts of the northern gyre provides up to 74% of the N utilized by phytoplankton. However, since the PONsusp represents only a small fraction of the total N pool, N2 fixation probably only plays a minor role in supplying new N to the euphotic zone in the surface waters of the northern subtropical gyre.


Geophysical Research Letters | 2015

A new perspective on environmental controls of marine nitrogen fixation

Angela Landolfi; Wolfgang Koeve; Heiner Dietze; Paul Kähler; Andreas Oschlies

Growing slowly, marine N2 fixers are generally expected to be competitive only where nitrogen (N) supply is low relative to that of phosphorus (P) with respect to the cellular N:P ratio (R) of non-fixing phytoplankton. This is at odds with observed high N2 fixation rates in the oligotrophic North Atlantic where the ratio of nutrients supplied to the surface is elevated in N relative to the average R (16:1). In this study, we investigate several mechanisms to solve this puzzle: iron limitation, phosphorus enhancement by preferential remineralization or stoichiometric diversity of phytoplankton, and dissolved organic phosphorus (DOP) utilization. Combining resource competition theory and a global coupled ecosystem-circulation model we find that the additional N and energy investments required for exo-enzymatic break-down of DOP gives N2 fixers a competitive advantage in oligotrophic P-starved regions. Accounting for this mechanism expands the ecological niche of N2-fixers also to regions where the nutrient supply is high in N relative to R, yielding, in our model, a pattern consistent with the observed high N2-fixation rates in the oligotrophic North Atlantic.


Geophysical Research Letters | 2016

Limited impact of atmospheric nitrogen deposition on marine productivity due to biogeochemical feedbacks in a global ocean model

Christopher J. Somes; Angela Landolfi; Wolfgang Koeve; Andreas Oschlies

The impact of increasing anthropogenic atmospheric nitrogen deposition on marine biogeochemistry is uncertain. We performed simulations to quantify its effect on nitrogen cycling and marine productivity in a global 3-D ocean biogeochemistry model. Nitrogen fixation provides an efficient feedback by decreasing immediately to deposition, whereas water column denitrification increases more gradually in the slowly expanding oxygen deficient zones. Counterintuitively, nitrogen deposition near oxygen deficient zones causes a net loss of marine nitrogen due to the stoichiometry of denitrification. In our idealized atmospheric deposition simulations that only account for nitrogen cycle perturbations, these combined stabilizing feedbacks largely compensate deposition and suppress the increase in global marine productivity to 15%. Our study emphasizes including the dynamic response of nitrogen fixation and denitrification to atmospheric nitrogen deposition to predict future changes of the marine nitrogen cycle and productivity.


Philosophical Transactions of the Royal Society A | 2017

Patterns of deoxygenation: sensitivity to natural and anthropogenic drivers

Andreas Oschlies; Olaf Duteil; Julia Getzlaff; Wolfgang Koeve; Angela Landolfi; Sunke Schmidtko

Observational estimates and numerical models both indicate a significant overall decline in marine oxygen levels over the past few decades. Spatial patterns of oxygen change, however, differ considerably between observed and modelled estimates. Particularly in the tropical thermocline that hosts open-ocean oxygen minimum zones, observations indicate a general oxygen decline, whereas most of the state-of-the-art models simulate increasing oxygen levels. Possible reasons for the apparent model-data discrepancies are examined. In order to attribute observed historical variations in oxygen levels, we here study mechanisms of changes in oxygen supply and consumption with sensitivity model simulations. Specifically, the role of equatorial jets, of lateral and diapycnal mixing processes, of changes in the wind-driven circulation and atmospheric nutrient supply, and of some poorly constrained biogeochemical processes are investigated. Predominantly wind-driven changes in the low-latitude oceanic ventilation are identified as a possible factor contributing to observed oxygen changes in the low-latitude thermocline during the past decades, while the potential role of biogeochemical processes remains difficult to constrain. We discuss implications for the attribution of observed oxygen changes to anthropogenic impacts and research priorities that may help to improve our mechanistic understanding of oxygen changes and the quality of projections into a changing future. This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’.


Global Biogeochemical Cycles | 2017

Oceanic nitrogen cycling and N2O flux perturbations in the Anthropocene

Angela Landolfi; Christopher J. Somes; Wolfgang Koeve; Andreas Oschlies

There is currently no consensus on how humans are affecting the marine nitrogen (N) cycle, which limits marine biological production and CO2 uptake. Anthropogenic changes in ocean warming, deoxygenation, and atmospheric N deposition can all individually affect the marine N cycle and the oceanic production of the greenhouse gas nitrous oxide (N2O). However, the combined effect of these perturbations on marine N cycling, ocean productivity, and marine N2O production is poorly understood. Here we use an Earth system model of intermediate complexity to investigate the combined effects of estimated 21st century CO2 atmospheric forcing and atmospheric N deposition. Our simulations suggest that anthropogenic perturbations cause only a small imbalance to the N cycle relative to preindustrial conditions (∼+5 Tg N y−1 in 2100). More N loss from water column denitrification in expanded oxygen minimum zones (OMZs) is counteracted by less benthic denitrification, due to the stratification-induced reduction in organic matter export. The larger atmospheric N load is offset by reduced N inputs by marine N2 fixation. Our model predicts a decline in oceanic N2O emissions by 2100. This is induced by the decrease in organic matter export and associated N2O production and by the anthropogenically driven changes in ocean circulation and atmospheric N2O concentrations. After comprehensively accounting for a series of complex physical-biogeochemical interactions, this study suggests that N flux imbalances are limited by biogeochemical feedbacks that help stabilize the marine N inventory against anthropogenic changes. These findings support the hypothesis that strong negative feedbacks regulate the marine N inventory on centennial time scales.


Geophysical Research Letters | 2018

Global Distribution of Non-algal Particles From Ocean Color Data and Implications for Phytoplankton Biomass Detection

M. Bellacicco; G. Volpe; N. Briggs; V. Brando; J. Pitarch; Angela Landolfi; S. Colella; Salvatore Marullo; R. Santoleri

In the last few decades, phytoplankton biomass has been commonly studied from space. However, satellite analysis of non-algal particles (NAPs), including heterotrophic bacteria and viruses, is relatively recent. In this work, we estimate the backscattering coefficient associated with the NAP fraction that does not covary with chlorophyll based on satellite particulate backscattering coefficient and chlorophyll (bbpNAP). bbpNAP is computed at 100-km resolution using 19 years of monthly satellite data. We find clear differences in bbpNAP between northern and southern oceans. High bbpNAP values are found in the Arctic and Southern Oceans, the North Atlantic area influenced by the Gulf Stream current, as well as shelf regions (i.e., Patagonian shelf) affected by upwelling regimes. Low correlation between chlorophyll and backscattering prevents precise bbpNAP estimations in oligotrophic areas (e.g., subtropical gyres). These bbpNAP estimations lead to a reduction to half in satellite-based phytoplankton biomass estimates respect to previously published results.


Frontiers in Microbiology | 2018

Global Marine N2 Fixation Estimates: From Observations to Models

Angela Landolfi; Paul Kähler; Wolfgang Koeve; Andreas Oschlies

Fixed nitrogen (N) limits productivity across much of the low-latitude ocean. The magnitude of its inventory results from the balance of N input and N loss, the latter largely occurring in regionally well-defined low-oxygen waters and sediments (denitrification and anammox). The rate and distribution of N input by biotic N2 fixation, the dominant N source, is not well known. Here we compile N2 fixation estimates from experimental measurements, tracer-based geochemical and modeling approaches, and discuss their limitations and uncertainties. The lack of adequate experimental data coverage and the insufficient understanding of the controls of marine N2 fixation result in high uncertainties, which make the assessment of the current N-balance a challenge. We suggest that a more comprehensive understanding of the environmental and ecological interaction of marine N2 fixers is required to advance the field toward robust N2 fixation rates estimates and predictions.


Nature Geoscience | 2008

Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres

Rhiannon L. Mather; S. Reynolds; George A. Wolff; Richard G. Williams; Sinhue Torres-Valdes; E. Malcolm S. Woodward; Angela Landolfi; Xi Pan; Richard Sanders; Eric P. Achterberg


Biogeosciences | 2012

Overlooked runaway feedback in the marine nitrogen cycle: the vicious cycle

Angela Landolfi; Heiner Dietze; Wolfgang Koeve; Andreas Oschlies

Collaboration


Dive into the Angela Landolfi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Reynolds

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge