Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Somes is active.

Publication


Featured researches published by Christopher J. Somes.


Paleoceanography | 2012

A review of nitrogen isotopic alteration in marine sediments

Rebecca S. Robinson; Markus Kienast; Ana Luiza Spadano Albuquerque; Mark A. Altabet; Sergio Contreras; Ricardo De Pol Holz; Nathalie Dubois; Roger Francois; Eric D. Galbraith; Ting-Chang Hsu; T. S. Ivanochko; Samuel L. Jaccard; Shuh-Ji Kao; Thorsten Kiefer; Stephanie S. Kienast; Moritz F. Lehmann; Philippe Martinez; Matthew D. McCarthy; Jürgen Möbius; Tom F. Pedersen; Tracy M. Quan; Evgeniya Ryabenko; Andreas Schmittner; Ralph R. Schneider; Aya Schneider-Mor; Masahito Shigemitsu; Daniel J. Sinclair; Christopher J. Somes; Anja S Studer; Robert C. Thunell

Key Points: Use of sedimentary nitrogen isotopes is examined; On average, sediment 15N/14N increases approx. 2 per mil during early burial; Isotopic alteration scales with water depth Abstract: Nitrogen isotopes are an important tool for evaluating past biogeochemical cycling from the paleoceanographic record. However, bulk sedimentary nitrogen isotope ratios, which can be determined routinely and at minimal cost, may be altered during burial and early sedimentary diagenesis, particularly outside of continental margin settings. The causes and detailed mechanisms of isotopic alteration are still under investigation. Case studies of the Mediterranean and South China Seas underscore the complexities of investigating isotopic alteration. In an effort to evaluate the evidence for alteration of the sedimentary N isotopic signal and try to quantify the net effect, we have compiled and compared data demonstrating alteration from the published literature. A >100 point comparison of sediment trap and surface sedimentary nitrogen isotope values demonstrates that, at sites located off of the continental margins, an increase in sediment 15N/14N occurs during early burial, likely at the seafloor. The extent of isotopic alteration appears to be a function of water depth. Depth-related differences in oxygen exposure time at the seafloor are likely the dominant control on the extent of N isotopic alteration. Moreover, the compiled data suggest that the degree of alteration is likely to be uniform through time at most sites so that bulk sedimentary isotope records likely provide a good means for evaluating relative changes in the global N cycle.


Global Biogeochemical Cycles | 2010

Simulating the global distribution of nitrogen isotopes in the ocean

Christopher J. Somes; Andreas Schmittner; Eric D. Galbraith; Moritz F. Lehmann; Mark A. Altabet; Joseph P. Montoya; Ricardo M. Letelier; Alan C. Mix; Annie Bourbonnais; Michael Eby

9 isotopes, 14 N and 15 N, in the nitrate (NO3 ), phytoplankton, zooplankton, and detritus 10 variables of the marine ecosystem model. The isotope effects of algal NO3 uptake, 11 nitrogen fixation, water column denitrification, and zooplankton excretion are considered 12 as well as the removal of NO3 by sedimentary denitrification. A global database of 13 d 15 NO3 observations is compiled from previous studies and compared to the model 14 results on a regional basis where sufficient observations exist. The model is able to 15 qualitatively and quantitatively reproduce many of the observed patterns such as high 16 subsurface values in water column denitrification zones and the meridional and vertical 17 gradients in the Southern Ocean. The observed pronounced subsurface minimum in the 18 Atlantic is underestimated by the model presumably owing to too little simulated 19 nitrogen fixation there. Sensitivity experiments reveal that algal NO3 uptake, nitrogen 20 fixation, and water column denitrification have the strongest effects on the simulated 21 distribution of nitrogen isotopes, whereas the effect from zooplankton excretion is 22 weaker. Both water column and sedimentary denitrification also have important indirect 23 effects on the nitrogen isotope distribution by reducing the fixed nitrogen inventory, 24 which creates an ecological niche for nitrogen fixers and, thus, stimulates additional N2 25 fixation in the model. Important model deficiencies are identified, and strategies for 26 future improvement and possibilities for model application are outlined.


Paleoceanography | 2016

Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump

Andreas Schmittner; Christopher J. Somes

A three-dimensional, process-based model of the oceans carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the oceans fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the models Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510–670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient during the LGM. Both circulation and biological nutrient utilization could contribute. However, these conclusions are preliminary given our idealized experiments, which do not consider changes in benthic denitrification and spatially inhomogenous changes in aeolian iron fluxes. The analysis illustrates interactions between the carbon and nitrogen cycles as well as the complementary constraints provided by their isotopes. Whereas carbon isotopes are sensitive to circulation changes and indicate well the three-dimensional Corg distribution, nitrogen isotopes are more sensitive to biological nutrient utilization.


Geophysical Research Letters | 2010

Nitrogen isotope simulations show the importance of atmospheric iron deposition for nitrogen fixation across the Pacific Ocean

Christopher J. Somes; Andreas Schmittner; Mark A. Altabet

Nitrogen (N) fixation by specialized microorganisms (diazotrophs) influences global plankton productivity because it provides the ocean with most of its bio-available N. However, its global rate and large-scale spatial distribution is still regarded with considerable uncertainty. Here we use a global ocean nitrogen isotope model, in comparison with δ15NO3− observations, to constrain the pattern of N2 fixation across the Pacific Ocean. N2 fixation introduces isotopically light atmospheric N2 from to the ocean (δ15N = 0‰) relative to the oceanic average near 5‰, which makes nitrogen isotopes suitable to infer patterns of N2 fixation. Including atmospheric iron limitation of diazotrophy in the model shifts the pattern of simulated N2 fixation from the South Pacific to the North Pacific and from the East Pacific westward. These changes considerably improve the agreement with meridional transects of available δ15NO3− observations, as well as excess P (PO43− − NO3−/16), suggesting that atmospheric iron deposition is indeed important for N fixation in the Pacific Ocean. This study highlights the potential for using δ15N observations and model simulations to constrain patterns and rates of N fixation in the ocean.


Geophysical Research Letters | 2016

Limited impact of atmospheric nitrogen deposition on marine productivity due to biogeochemical feedbacks in a global ocean model

Christopher J. Somes; Angela Landolfi; Wolfgang Koeve; Andreas Oschlies

The impact of increasing anthropogenic atmospheric nitrogen deposition on marine biogeochemistry is uncertain. We performed simulations to quantify its effect on nitrogen cycling and marine productivity in a global 3-D ocean biogeochemistry model. Nitrogen fixation provides an efficient feedback by decreasing immediately to deposition, whereas water column denitrification increases more gradually in the slowly expanding oxygen deficient zones. Counterintuitively, nitrogen deposition near oxygen deficient zones causes a net loss of marine nitrogen due to the stoichiometry of denitrification. In our idealized atmospheric deposition simulations that only account for nitrogen cycle perturbations, these combined stabilizing feedbacks largely compensate deposition and suppress the increase in global marine productivity to 15%. Our study emphasizes including the dynamic response of nitrogen fixation and denitrification to atmospheric nitrogen deposition to predict future changes of the marine nitrogen cycle and productivity.


Journal of Geophysical Research | 2014

Extensive hydrogen supersaturations in the western South Atlantic Ocean suggest substantial underestimation of nitrogen fixation

Robert M. Moore; Markus Kienast; Michael Fraser; John J. Cullen; Curtis Deutsch; Stephanie Dutkiewicz; Michael J. Follows; Christopher J. Somes

The nitrogen cycle is fundamental to Earths biogeochemistry. Yet major uncertainties of quantification remain, particularly regarding the global oceanic nitrogen fixation rate. Hydrogen is produced during nitrogen fixation and will become supersaturated in surface waters if there is net release from diazotrophs. Ocean surveys of hydrogen supersaturation thus have the potential to illustrate the spatial and temporal distribution of nitrogen fixation, and to guide the far more onerous but quantitative methods for measuring it. Here we present the first transect of high resolution measurements of hydrogen supersaturations in surface waters along a meridional 10,000 km cruise track through the Atlantic. We compare measured saturations with published measurements of nitrogen fixation rates and also with model-derived values. If the primary source of excess hydrogen is nitrogen fixation and has a hydrogen release ratio similar to Trichodesmium, our hydrogen measurements would point to similar rates of fixation in the North and South Atlantic, roughly consistent with modelled fixation rates but not with measured rates, which are lower in the south. Possible explanations would include any substantial nitrogen fixation by newly discovered diazotrophs, particularly any having a hydrogen release ratio similar to or exceeding that of Trichodesmium; under-sampling of nitrogen fixation south of the equator related to excessive focus on Trichodesmium; and methodological shortcomings of nitrogen fixation techniques that cause a bias towards colonial diazotrophs relative to unicellular forms. Alternatively our data are affected by an unknown hydrogen source that is greater in the southern half of the cruise track than the northern.


Frontiers in Marine Science | 2017

A Three-Dimensional Model of the Marine Nitrogen Cycle during the Last Glacial Maximum Constrained by Sedimentary Isotopes

Christopher J. Somes; Andreas Schmittner; Juan Muglia; Andreas Oschlies

Nitrogen is a key limiting nutrient that influences marine productivity and carbon sequestration in the ocean via the biological pump. In this study, we present the first estimates of nitrogen cycling in a coupled 3D ocean-biogeochemistry-isotope model forced with realistic boundary conditions from the Last Glacial Maximum (LGM) ~21,000 years before present constrained by nitrogen isotopes. The model predicts a large decrease in nitrogen loss rates due to higher oxygen concentrations in the thermocline and sea level drop, and, as a response, reduced nitrogen fixation. Model experiments are performed to evaluate effects of hypothesized increases of atmospheric iron fluxes and oceanic phosphorus inventory relative to present-day conditions. Enhanced atmospheric iron deposition, which is required to reproduce observations, fuels export production in the Southern Ocean causing increased deep ocean nutrient storage. This reduces transport of preformed nutrients to the tropics via mode waters, thereby decreasing productivity, oxygen deficient zones, and water column N-loss there. A larger global phosphorus inventory up to 15% cannot be excluded from the currently available nitrogen isotope data. It stimulates additional nitrogen fixation that increases the global oceanic nitrogen inventory, productivity and water column N-loss. Among our sensitivity simulations, the best agreements with nitrogen isotope data from LGM sediments indicate that water column and sedimentary N-loss were reduced by 17‒62% and 35‒69%, respectively, relative to preindustrial values. Our model demonstrates that multiple processes alter the nitrogen isotopic signal in most locations, which creates large uncertainties when quantitatively constraining individual nitrogen cycling processes. One key uncertainty is the global response of nitrogen fixation, which decreases by 25‒65% in the model during the LGM, due to the lack of observations in the open ocean most notably in the tropical and subtropical southern hemisphere. Nevertheless, the model estimated large increase to the global nitrate inventory of 6.5‒22% suggests it may play an important role enhancing the biological carbon pump that contributes to lower atmospheric CO2 during the LGM.


Global Biogeochemical Cycles | 2017

Oceanic nitrogen cycling and N2O flux perturbations in the Anthropocene

Angela Landolfi; Christopher J. Somes; Wolfgang Koeve; Andreas Oschlies

There is currently no consensus on how humans are affecting the marine nitrogen (N) cycle, which limits marine biological production and CO2 uptake. Anthropogenic changes in ocean warming, deoxygenation, and atmospheric N deposition can all individually affect the marine N cycle and the oceanic production of the greenhouse gas nitrous oxide (N2O). However, the combined effect of these perturbations on marine N cycling, ocean productivity, and marine N2O production is poorly understood. Here we use an Earth system model of intermediate complexity to investigate the combined effects of estimated 21st century CO2 atmospheric forcing and atmospheric N deposition. Our simulations suggest that anthropogenic perturbations cause only a small imbalance to the N cycle relative to preindustrial conditions (∼+5 Tg N y−1 in 2100). More N loss from water column denitrification in expanded oxygen minimum zones (OMZs) is counteracted by less benthic denitrification, due to the stratification-induced reduction in organic matter export. The larger atmospheric N load is offset by reduced N inputs by marine N2 fixation. Our model predicts a decline in oceanic N2O emissions by 2100. This is induced by the decrease in organic matter export and associated N2O production and by the anthropogenically driven changes in ocean circulation and atmospheric N2O concentrations. After comprehensively accounting for a series of complex physical-biogeochemical interactions, this study suggests that N flux imbalances are limited by biogeochemical feedbacks that help stabilize the marine N inventory against anthropogenic changes. These findings support the hypothesis that strong negative feedbacks regulate the marine N inventory on centennial time scales.


Paleoceanography | 2017

Combined Effects of Atmospheric and Seafloor Iron Fluxes to the Glacial Ocean: LAST GLACIAL MAXIMUM OCEAN IRON CYCLE

Juan Muglia; Christopher J. Somes; Levin Nickelsen; Andreas Schmittner

Changes in the ocean iron cycle could help explain the low atmospheric CO2 during the Last Glacial Maximum (LGM). Previous modeling studies have mostly considered changes in aeolian iron fluxes, although it is known that sedimentary and hydrothermal fluxes are important iron sources for todays ocean. Here we explore effects of preindustrial-to-LGM changes in atmospheric dust, sedimentary, and hydrothermal fluxes on the oceans iron and carbon cycles in a global coupled biogeochemical-circulation model. Considering variable atmospheric iron solubility decreases LGM surface soluble iron fluxes compared with assuming constant solubility. This limits potential increases in productivity and export production due to surface iron fertilization, lowering atmospheric CO2 by only 4 ppm. The effect is countered by a decrease in sedimentary flux due to lower sea level, which increases CO2 by 15 ppm. Assuming a 10 times higher iron dust solubility in the Southern Ocean, combined with changes in sedimentary flux, we obtain an atmospheric CO2 reduction of 13 ppm. The high uncertainty in the iron fluxes does not allow us to determine the net direction and magnitude of variations in atmospheric CO2 due to changes in the iron cycle. Our model does not account for changes to iron-binding ligand concentrations that could modify the results. We conclude that when evaluating glacial-interglacial changes in the ocean iron cycle, not only surface but also seafloor fluxes must be taken into account.


Biogeosciences | 2013

Isotopic constraints on the pre-industrial oceanic nitrogen budget

Christopher J. Somes; Andreas Oschlies; Andreas Schmittner

Collaboration


Dive into the Christopher J. Somes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Landolfi

National Oceanography Centre

View shared research outputs
Top Co-Authors

Avatar

Mark A. Altabet

University of Massachusetts Dartmouth

View shared research outputs
Top Co-Authors

Avatar

Eric D. Galbraith

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Muglia

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge