Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela M. Hall is active.

Publication


Featured researches published by Angela M. Hall.


Diabetes | 2007

CD36-Facilitated Fatty Acid Uptake Inhibits Leptin Production and Signaling in Adipose Tissue

Tahar Hajri; Angela M. Hall; Dalan R. Jensen; Terri Pietka; Victor A. Drover; Huan Tao; Robert H. Eckel; Nada A. Abumrad

Leptin plays an important role in regulating energy expenditure in response to food intake, but nutrient regulation of leptin is incompletely understood. In this study using in vivo and in vitro approaches, we examined the role of fatty acid uptake in modulating leptin expression and production. Leptin levels are doubled in the CD36-null mouse, which has impaired cellular fatty acid uptake despite a 40% decrease in fat mass. The CD36-null mouse is protected from diet-induced weight gain but not from that consequent to leptin deficiency. Leptin secretion in the CD36-null mouse is strongly responsive to glucose intake, whereas a blunted response is observed in the wild-type mouse. This indicates that leptin regulation integrates opposing influences from glucose and fatty acid and loss of fatty acid inhibition allows unsuppressed stimulation by glucose/insulin. Fatty acid inhibition of basal and insulin-stimulated leptin release is linked to CD36-facilitated fatty acid flux, which is important for fatty acid activation of peroxisome proliferator–activated receptor γ and likely contributes to the nutrient sensing function of adipocytes. Fatty acid uptake also may modulate adipocyte leptin signaling. The ratio of phosphorylated to unphosphorylated signal transducer and activator of transcription 3, an index of leptin activity, is increased in CD36-null fat tissue disproportionately to leptin levels. In addition, expression of leptin-sensitive fatty acid oxidative enzymes is enhanced. Targeting adipocyte CD36 may offer a way to uncouple leptin production and adiposity.


Journal of Biological Chemistry | 2012

Insulin Resistance and Metabolic Derangements in Obese Mice are Ameliorated by a Novel Peroxisome Proliferator-Activated Receptor γ-sparing Thiazolidinedione

Zhouji Chen; Patrick A. Vigueira; Kari T. Chambers; Angela M. Hall; Mayurranjan S. Mitra; Nathan R. Qi; William G. McDonald; Jerry R. Colca; Rolf F. Kletzien; Brian N. Finck

Background: Thiazolidinediones may have insulin-sensitizing effects independent of the nuclear receptor PPARγ. Results: A novel PPARγ-sparing thiazolidinedione ameliorated insulin resistance and inflammation in obese mice. Conclusion: The insulin-sensitizing effects of thiazolidinediones are separable from the ability to bind PPARγ. Significance: Identification of other molecular targets of thiazolidinediones may generate new therapeutics for treatment of insulin resistance and diabetes. Currently approved thiazolidinediones (TZDs) are effective insulin-sensitizing drugs that may have efficacy for treatment of a variety of metabolic and inflammatory diseases, but their use is limited by side effects that are mediated through ectopic activation of the peroxisome proliferator-activated receptor γ (PPARγ). Emerging evidence suggests that the potent anti-diabetic efficacy of TZDs can be separated from the ability to serve as ligands for PPARγ. A novel TZD analog (MSDC-0602) with very low affinity for binding and activation of PPARγ was evaluated for its effects on insulin resistance in obese mice. MSDC-0602 treatment markedly improved several measures of multiorgan insulin sensitivity, adipose tissue inflammation, and hepatic metabolic derangements, including suppressing hepatic lipogenesis and gluconeogenesis. These beneficial effects were mediated at least in part via direct actions on hepatocytes and were preserved in hepatocytes from liver-specific PPARγ−/− mice, indicating that PPARγ was not required to suppress these pathways. In conclusion, the beneficial pharmacology exhibited by MSDC-0602 on insulin sensitivity suggests that PPARγ-sparing TZDs are effective for treatment of type 2 diabetes with reduced risk of PPARγ-mediated side effects.


Journal of Biological Chemistry | 2009

Lipin 2 Is a Liver-enriched Phosphatidate Phosphohydrolase Enzyme That Is Dynamically Regulated by Fasting and Obesity in Mice

Matthew C. Gropler; Thurl E. Harris; Angela M. Hall; Nathan E. Wolins; Richard W. Gross; Xianlin Han; Zhouji Chen; Brian N. Finck

Lipin 1 is a bifunctional intracellular protein that regulates fatty acid metabolism in the nucleus via interactions with DNA-bound transcription factors and at the endoplasmic reticulum as a phosphatidic acid phosphohydrolase enzyme (PAP-1) to catalyze the penultimate step in triglyceride synthesis. However, livers of 8-day-old mice lacking lipin 1 (fld mice) exhibited normal PAP-1 activity and a 20-fold increase in triglyceride levels. We sought to further analyze the hepatic lipid profile of these mice by electrospray ionization mass spectrometry. Surprisingly, hepatic content of phosphatidate, the substrate of PAP-1 enzymes, was markedly diminished in fld mice. Similarly, other phospholipids derived from phosphatidate, phosphatidylglycerol and cardiolipin, were also depleted. Another member of the lipin family (lipin 2) is enriched in liver, and hepatic lipin 2 protein content was markedly increased by lipin 1 deficiency, food deprivation, and obesity, often independent of changes in steady-state mRNA levels. Importantly, RNAi against lipin 2 markedly reduced PAP-1 activity in hepatocytes from both wild type and fld mice and suppressed triglyceride synthesis under conditions of high fatty acid availability. Collectively, these data suggest that lipin 2 plays an important role as a hepatic PAP-1 enzyme.


Journal of Lipid Research | 2012

Evidence for regulated monoacylglycerol acyltransferase expression and activity in human liver

Angela M. Hall; Kou Kou; Zhouji Chen; Terri Pietka; Mrudula Kumar; Kevin M. Korenblat; Kyuha Lee; Kay Ahn; Elisa Fabbrini; Samuel Klein; Bryan Goodwin; Brian N. Finck

Intrahepatic lipid accumulation is extremely common in obese subjects and is associated with the development of insulin resistance and diabetes. Hepatic diacylglycerol and triacylglycerol synthesis predominantly occurs through acylation of glycerol-3-phosphate. However, an alternative pathway for synthesizing diacylglycerol from monoacylglycerol acyltransferases (MGAT) could also contribute to hepatic glyceride pools. MGAT activity and the expression of the three genes encoding MGAT enzymes (MOGAT1, MOGAT2, and MOGAT3) were determined in liver biopsies from obese human subjects before and after gastric bypass surgery. MOGAT expression was also assessed in liver of subjects with nonalcoholic fatty liver disease (NAFLD) or control livers. All MOGAT genes were expressed in liver, and hepatic MGAT activity was readily detectable in liver lysates. The hepatic expression of MOGAT3 was highly correlated with MGAT activity, whereas MOGAT1 and MOGAT2 expression was not, and knockdown of MOGAT3 expression attenuated MGAT activity in a liver-derived cell line. Marked weight loss following gastric bypass surgery was associated with a significant reduction in MOGAT2 and MOGAT3 expression, which were also overexpressed in NAFLD subjects. These data suggest that the MGAT pathway is active and dynamically regulated in human liver and could be an important target for pharmacologic intervention for the treatment of obesity-related insulin resistance and NAFLD.


Biology of Sex Differences | 2012

Sexually dimorphic effect of aging on skeletal muscle protein synthesis

Gordon I. Smith; Dominic N. Reeds; Angela M. Hall; Kari T. Chambers; Brian N. Finck; Bettina Mittendorfer

BackgroundAlthough there appear to be no differences in muscle protein turnover in young and middle aged men and women, we have reported significant differences in the rate of muscle protein synthesis between older adult men and women. This suggests that aging may affect muscle protein turnover differently in men and women.MethodsWe measured the skeletal muscle protein fractional synthesis rate (FSR) by using stable isotope-labeled tracer methods during basal postabsorptive conditions and during a hyperaminoacidemic-hyperinsulinemic-euglycemic clamp in eight young men (25–45 y), ten young women (25–45 y), ten old men (65–85 y) and ten old women (65–85 y).ResultsThe basal muscle protein FSR was not different in young and old men (0.040 ± 0.004 and 0.043 ± 0.005%·h-1, respectively) and combined insulin, glucose and amino acid infusion significantly increased the muscle protein FSR both in young (to 0.063 ± 0.006%·h-1) and old (to 0.051 ± 0.008%·h-1) men but the increase (0.023 ± 0.004 vs. 0.009 ± 0.004%·h-1, respectively) was ~60% less in the old men (P = 0.03). In contrast, the basal muscle protein FSR was ~30% greater in old than young women (0.060 ± 0.003 vs. 0.046 ± 0.004%·h-1, respectively; P < 0.05) and combined insulin, glucose and amino acid infusion significantly increased the muscle protein FSR in young (P < 0.01) but not in old women (P = 0.10) so that the FSR was not different between young and old women during the clamp (0.074 ± 0.006%·h-1 vs. 0.072 ± 0.006%·h-1, respectively).ConclusionsThere is sexual dimorphism in the age-related changes in muscle protein synthesis and thus the metabolic processes responsible for the age-related decline in muscle mass.


Journal of Lipid Research | 2010

Dynamic and differential regulation of proteins that coat lipid droplets in fatty liver dystrophic mice.

Angela M. Hall; Elizabeth M. Brunt; Zhouji Chen; Navin Viswakarma; Janardan K. Reddy; Nathan E. Wolins; Brian N. Finck

Lipid droplet proteins (LDPs) coat the surface of triglyceride-rich lipid droplets and regulate their formation and lipolysis. We profiled hepatic LDP expression in fatty liver dystrophic (fld) mice, a unique model of neonatal hepatic steatosis that predictably resolves between postnatal day 14 (P14) and P17. Western blotting revealed that perilipin-2/ADRP and perilipin-5/OXPAT were markedly increased in steatotic fld liver but returned to normal by P17. However, the changes in perilipin-2 and perilipin-5 protein content in fld mice were exaggerated compared with relatively modest increases in corresponding mRNAs encoding these proteins, a phenomenon likely mediated by increased protein stability. Conversely, cell death-inducing DFFA-like effector (Cide) family genes were strongly induced at the level of mRNA expression in steatotic fld mouse liver. Surprisingly, levels of peroxisome proliferator-activated receptor γ, which is known to regulate Cide expression, were unchanged in fld mice. However, sterol-regulatory element binding protein 1 (SREBP-1) was activated in fld liver and CideA was revealed as a new direct target gene of SREBP-1. In summary, LDP content is markedly increased in liver of fld mice. However, whereas perilipin-2 and perilipin-5 levels are primarily regulated posttranslationally, Cide family mRNA expression is induced, suggesting that these families of LDP are controlled at different regulatory checkpoints.


Diabetes | 2014

Abrogating Monoacylglycerol Acyltransferase Activity in Liver Improves Glucose Tolerance and Hepatic Insulin Signaling in Obese Mice

Angela M. Hall; Nisreen Soufi; Kari T. Chambers; Zhouji Chen; George G. Schweitzer; Kyle S. McCommis; Derek M. Erion; Mark J. Graham; Xiong Su; Brian N. Finck

Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol (DAG), a lipid that has been linked to the development of hepatic insulin resistance through activation of protein kinase C (PKC). The expression of genes that encode MGAT enzymes is induced in the livers of insulin-resistant human subjects with nonalcoholic fatty liver disease, but whether MGAT activation is causal of hepatic steatosis or insulin resistance is unknown. We show that the expression of Mogat1, which encodes MGAT1, and MGAT activity are also increased in diet-induced obese (DIO) and ob/obmice. To probe the metabolic effects of MGAT1 in the livers of obese mice, we administered antisense oligonucleotides (ASOs) against Mogat1 to DIO and ob/ob mice for 3 weeks. Knockdown of Mogat1 in liver, which reduced hepatic MGAT activity, did not affect hepatic triacylglycerol content and unexpectedly increased total DAG content. Mogat1 inhibition also increased both membrane and cytosolic compartment DAG levels. However, Mogat1 ASO treatment significantly improved glucose tolerance and hepatic insulin signaling in obese mice. In summary, inactivation of hepatic MGAT activity, which is markedly increased in obese mice, improved glucose tolerance and hepatic insulin signaling independent of changes in body weight, intrahepatic DAG and TAG content, and PKC signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Mice with an adipocyte-specific lipin 1 separation-of-function allele reveal unexpected roles for phosphatidic acid in metabolic regulation

Mayurranjan S. Mitra; Zhouji Chen; Hongmei Ren; Thurl E. Harris; Kari T. Chambers; Angela M. Hall; Karim Nadra; Samuel Klein; Roman Chrast; Xiong Su; Andrew J. Morris; Brian N. Finck

Lipin 1 is a coregulator of DNA-bound transcription factors and a phosphatidic acid (PA) phosphatase (PAP) enzyme that catalyzes a critical step in the synthesis of glycerophospholipids. Lipin 1 is highly expressed in adipocytes, and constitutive loss of lipin 1 blocks adipocyte differentiation; however, the effects of Lpin1 deficiency in differentiated adipocytes are unknown. Here we report that adipocyte-specific Lpin1 gene recombination unexpectedly resulted in expression of a truncated lipin 1 protein lacking PAP activity but retaining transcriptional regulatory function. Loss of lipin 1-mediated PAP activity in adipocytes led to reduced glyceride synthesis and increased PA content. Characterization of the deficient mice also revealed that lipin 1 normally modulates cAMP-dependent signaling through protein kinase A to control lipolysis by metabolizing PA, which is an allosteric activator of phosphodiesterase 4 and the molecular target of rapamycin. Consistent with these findings, lipin 1 expression was significantly related to adipose tissue lipolytic rates and protein kinase A signaling in adipose tissue of obese human subjects. Taken together, our findings identify lipin 1 as a reciprocal regulator of triglyceride synthesis and hydrolysis in adipocytes, and suggest that regulation of lipolysis by lipin 1 is mediated by PA-dependent modulation of phosphodiesterase 4.


Obesity | 2010

Hepatic Expression of Cell Death–inducing DFFA-like Effector C in Obese Subjects Is Reduced by Marked Weight Loss

Angela M. Hall; Elizabeth M. Brunt; Samuel Klein; Brian N. Finck

The hepatic expression of the cell death–inducing DNA fragmentation factor A–like effector family (CIDEA, CIDEB, and CIDEC) genes is markedly upregulated in mouse models of obesity. We evaluated the expression of CIDE genes in liver of obese human subjects undergoing gastric bypass surgery (GBS), at the time of surgery and again 1 year later when subjects had lost 37.6 ± 1.4% of their initial body weight. At the time of GBS, the expression of CIDEA (r2 = 0.20, P = 0.04) and CIDEC (r2 = 0.32, P = 0.01) was strongly correlated with BMI, whereas CIDEB was not (r2 = 0.01, P = 0.81). One year after surgery, CIDEC expression had declined over 60% (P = 0.02), whereas CIDEA expression did not change (P = 0.20). These data demonstrate that, consistent with previous studies conducted in rodents, hepatic expression of CIDEA and CIDEC, but not CIDEB, is increased in obese humans. Moreover, the hepatic expression of CIDEC is downregulated by marked weight loss.


Journal of Biological Chemistry | 2014

Inhibiting Monoacylglycerol Acyltransferase 1 Ameliorates Hepatic Metabolic Abnormalities but Not Inflammation and Injury in Mice

Nisreen Soufi; Angela M. Hall; Zhouji Chen; Jun Yoshino; Sara L. Collier; James Mathews; Elizabeth M. Brunt; Carolyn J. Albert; Mark J. Graham; David A. Ford; Brian N. Finck

Background: Mogat1 inhibition improves glucose metabolism in obese mice, but its effects on liver injury are unknown. Results: Mogat1 knockdown improved hepatic metabolic abnormalities but did not reduce liver inflammation or injury. Conclusion: Hepatic injury and metabolic abnormalities are separable disease entities. Significance: Attention to liver injury markers should be made when evaluating metabolic therapies. Abnormalities in hepatic lipid metabolism and insulin action are believed to play a critical role in the etiology of nonalcoholic steatohepatitis. Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol, which is the penultimate step in one pathway for triacylglycerol synthesis. Hepatic expression of Mogat1, which encodes an MGAT enzyme, is increased in the livers of mice with hepatic steatosis, and knocking down Mogat1 improves glucose metabolism and hepatic insulin signaling, but whether increased MGAT activity plays a role in the etiology of nonalcoholic steatohepatitis is unclear. To examine this issue, mice were placed on a diet containing high levels of trans fatty acids, fructose, and cholesterol (HTF-C diet) or a low fat control diet for 4 weeks. Mice were injected with antisense oligonucleotides (ASOs) to knockdown Mogat1 or a scrambled ASO control for 12 weeks while remaining on diet. The HTF-C diet caused glucose intolerance, hepatic steatosis, and induced hepatic gene expression markers of inflammation, macrophage infiltration, and stellate cell activation. Mogat1 ASO treatment, which suppressed Mogat1 expression in liver and adipose tissue, attenuated weight gain, improved glucose tolerance, improved hepatic insulin signaling, and decreased hepatic triacylglycerol content compared with control ASO-treated mice on HTF-C chow. However, Mogat1 ASO treatment did not reduce hepatic diacylglycerol, cholesterol, or free fatty acid content; improve histologic measures of liver injury; or reduce expression of markers of stellate cell activation, liver inflammation, and injury. In conclusion, inhibition of hepatic Mogat1 in HTF-C diet-fed mice improves hepatic metabolic abnormalities without attenuating liver inflammation and injury.

Collaboration


Dive into the Angela M. Hall's collaboration.

Top Co-Authors

Avatar

Brian N. Finck

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Zhouji Chen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kari T. Chambers

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Samuel Klein

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Terri Pietka

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Elizabeth M. Brunt

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kyle S. McCommis

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

George G. Schweitzer

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jun Yoshino

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kim H. H. Liss

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge