Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kari T. Chambers is active.

Publication


Featured researches published by Kari T. Chambers.


Journal of Clinical Investigation | 2012

Gastric bypass and banding equally improve insulin sensitivity and β cell function

David Bradley; Caterina Conte; Bettina Mittendorfer; J. Christopher Eagon; J. Esteban Varela; Elisa Fabbrini; Amalia Gastaldelli; Kari T. Chambers; Xiong Su; Adewole L. Okunade; Bruce W. Patterson; Samuel Klein

Bariatric surgery in obese patients is a highly effective method of preventing or resolving type 2 diabetes mellitus (T2DM); however, the remission rate is not the same among different surgical procedures. We compared the effects of 20% weight loss induced by laparoscopic adjustable gastric banding (LAGB) or Roux-en-Y gastric bypass (RYGB) surgery on the metabolic response to a mixed meal, insulin sensitivity, and β cell function in nondiabetic obese adults. The metabolic response to meal ingestion was markedly different after RYGB than after LAGB surgery, manifested by rapid delivery of ingested glucose into the systemic circulation, by an increase in the dynamic insulin secretion rate, and by large, early postprandial increases in plasma glucose, insulin, and glucagon-like peptide-1 concentrations in the RYGB group. However, the improvement in oral glucose tolerance, insulin sensitivity, and overall β cell function after weight loss were not different between surgical groups. Additionally, both surgical procedures resulted in a similar decrease in adipose tissue markers of inflammation. We conclude that marked weight loss itself is primarily responsible for the therapeutic effects of RYGB and LAGB on insulin sensitivity, β cell function, and oral glucose tolerance in nondiabetic obese adults.


Journal of Biological Chemistry | 2011

Chronic Inhibition of Pyruvate Dehydrogenase in Heart Triggers an Adaptive Metabolic Response

Kari T. Chambers; Teresa C. Leone; Nandakumar Sambandam; Attila Kovacs; Cory S. Wagg; Gary D. Lopaschuk; Brian N. Finck; Daniel P. Kelly

Diabetic cardiac dysfunction is associated with decreased rates of myocardial glucose oxidation (GO) and increased fatty acid oxidation (FAO), a fuel shift that has been shown to sensitize the heart to ischemic insult and ventricular dysfunction. We sought to evaluate the metabolic and functional consequences of chronic suppression of GO in heart as modeled by transgenic mice with cardiac-specific overexpression of pyruvate dehydrogenase kinase 4 (myosin heavy chain (MHC)-PDK4 mice), an inhibitor of pyruvate dehydrogenase. Hearts of MHC-PDK4 mice were shown to exhibit an insulin-resistant substrate utilization profile, characterized by low GO rates and high FAO flux. Surprisingly, MHC-PDK4 mice were not sensitized to cardiac ischemia-reperfusion injury despite a fuel utilization pattern that phenocopied the diabetic heart. In addition, MHC-PDK4 mice were protected against high fat diet-induced myocyte lipid accumulation, likely related to increased capacity for FAO. The high rates of mitochondrial FAO in the MHC-PDK4 heart were related to heightened activity of the AMP-activated protein kinase, reduced levels of malonyl-CoA, and increased capacity for mitochondrial uncoupled respiration. The expression of the known AMP-activated protein kinase target, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial function and biogenesis, was also activated in the MHC-PDK4 heart. These results demonstrate that chronic activation of PDK4 triggers transcriptional and post-transcriptional mechanisms that re-program the heart for chronic high rates of FAO without the expected deleterious functional or metabolic consequences.


Journal of Biological Chemistry | 2012

Insulin Resistance and Metabolic Derangements in Obese Mice are Ameliorated by a Novel Peroxisome Proliferator-Activated Receptor γ-sparing Thiazolidinedione

Zhouji Chen; Patrick A. Vigueira; Kari T. Chambers; Angela M. Hall; Mayurranjan S. Mitra; Nathan R. Qi; William G. McDonald; Jerry R. Colca; Rolf F. Kletzien; Brian N. Finck

Background: Thiazolidinediones may have insulin-sensitizing effects independent of the nuclear receptor PPARγ. Results: A novel PPARγ-sparing thiazolidinedione ameliorated insulin resistance and inflammation in obese mice. Conclusion: The insulin-sensitizing effects of thiazolidinediones are separable from the ability to bind PPARγ. Significance: Identification of other molecular targets of thiazolidinediones may generate new therapeutics for treatment of insulin resistance and diabetes. Currently approved thiazolidinediones (TZDs) are effective insulin-sensitizing drugs that may have efficacy for treatment of a variety of metabolic and inflammatory diseases, but their use is limited by side effects that are mediated through ectopic activation of the peroxisome proliferator-activated receptor γ (PPARγ). Emerging evidence suggests that the potent anti-diabetic efficacy of TZDs can be separated from the ability to serve as ligands for PPARγ. A novel TZD analog (MSDC-0602) with very low affinity for binding and activation of PPARγ was evaluated for its effects on insulin resistance in obese mice. MSDC-0602 treatment markedly improved several measures of multiorgan insulin sensitivity, adipose tissue inflammation, and hepatic metabolic derangements, including suppressing hepatic lipogenesis and gluconeogenesis. These beneficial effects were mediated at least in part via direct actions on hepatocytes and were preserved in hepatocytes from liver-specific PPARγ−/− mice, indicating that PPARγ was not required to suppress these pathways. In conclusion, the beneficial pharmacology exhibited by MSDC-0602 on insulin sensitivity suggests that PPARγ-sparing TZDs are effective for treatment of type 2 diabetes with reduced risk of PPARγ-mediated side effects.


Biology of Sex Differences | 2012

Sexually dimorphic effect of aging on skeletal muscle protein synthesis

Gordon I. Smith; Dominic N. Reeds; Angela M. Hall; Kari T. Chambers; Brian N. Finck; Bettina Mittendorfer

BackgroundAlthough there appear to be no differences in muscle protein turnover in young and middle aged men and women, we have reported significant differences in the rate of muscle protein synthesis between older adult men and women. This suggests that aging may affect muscle protein turnover differently in men and women.MethodsWe measured the skeletal muscle protein fractional synthesis rate (FSR) by using stable isotope-labeled tracer methods during basal postabsorptive conditions and during a hyperaminoacidemic-hyperinsulinemic-euglycemic clamp in eight young men (25–45 y), ten young women (25–45 y), ten old men (65–85 y) and ten old women (65–85 y).ResultsThe basal muscle protein FSR was not different in young and old men (0.040 ± 0.004 and 0.043 ± 0.005%·h-1, respectively) and combined insulin, glucose and amino acid infusion significantly increased the muscle protein FSR both in young (to 0.063 ± 0.006%·h-1) and old (to 0.051 ± 0.008%·h-1) men but the increase (0.023 ± 0.004 vs. 0.009 ± 0.004%·h-1, respectively) was ~60% less in the old men (P = 0.03). In contrast, the basal muscle protein FSR was ~30% greater in old than young women (0.060 ± 0.003 vs. 0.046 ± 0.004%·h-1, respectively; P < 0.05) and combined insulin, glucose and amino acid infusion significantly increased the muscle protein FSR in young (P < 0.01) but not in old women (P = 0.10) so that the FSR was not different between young and old women during the clamp (0.074 ± 0.006%·h-1 vs. 0.072 ± 0.006%·h-1, respectively).ConclusionsThere is sexual dimorphism in the age-related changes in muscle protein synthesis and thus the metabolic processes responsible for the age-related decline in muscle mass.


Cell Reports | 2014

Mitochondrial Pyruvate Carrier 2 Hypomorphism in Mice Leads to Defects in Glucose-Stimulated Insulin Secretion

Patrick A. Vigueira; Kyle S. McCommis; George G. Schweitzer; Maria S. Remedi; Kari T. Chambers; Xiaorong Fu; William G. McDonald; Serena L. Cole; Jerry R. Colca; Rolf F. Kletzien; Shawn C. Burgess; Brian N. Finck

Carrier-facilitated pyruvate transport across the inner mitochondrial membrane plays an essential role in anabolic and catabolic intermediary metabolism. Mitochondrial pyruvate carrier 2 (Mpc2) is believed to be a component of the complex that facilitates mitochondrial pyruvate import. Complete MPC2 deficiency resulted in embryonic lethality in mice. However, a second mouse line expressing an N-terminal truncated MPC2 protein (Mpc2(Δ16)) was viable but exhibited a reduced capacity for mitochondrial pyruvate oxidation. Metabolic studies demonstrated exaggerated blood lactate concentrations after pyruvate, glucose, or insulin challenge in Mpc2(Δ16) mice. Additionally, compared with wild-type controls, Mpc2(Δ16) mice exhibited normal insulin sensitivity but elevated blood glucose after bolus pyruvate or glucose injection. This was attributable to reduced glucose-stimulated insulin secretion and was corrected by sulfonylurea KATP channel inhibitor administration. Collectively, these data are consistent with a role for MPC2 in mitochondrial pyruvate import and suggest that Mpc2 deficiency results in defective pancreatic β cell glucose sensing.


Diabetes | 2014

Abrogating Monoacylglycerol Acyltransferase Activity in Liver Improves Glucose Tolerance and Hepatic Insulin Signaling in Obese Mice

Angela M. Hall; Nisreen Soufi; Kari T. Chambers; Zhouji Chen; George G. Schweitzer; Kyle S. McCommis; Derek M. Erion; Mark J. Graham; Xiong Su; Brian N. Finck

Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol (DAG), a lipid that has been linked to the development of hepatic insulin resistance through activation of protein kinase C (PKC). The expression of genes that encode MGAT enzymes is induced in the livers of insulin-resistant human subjects with nonalcoholic fatty liver disease, but whether MGAT activation is causal of hepatic steatosis or insulin resistance is unknown. We show that the expression of Mogat1, which encodes MGAT1, and MGAT activity are also increased in diet-induced obese (DIO) and ob/obmice. To probe the metabolic effects of MGAT1 in the livers of obese mice, we administered antisense oligonucleotides (ASOs) against Mogat1 to DIO and ob/ob mice for 3 weeks. Knockdown of Mogat1 in liver, which reduced hepatic MGAT activity, did not affect hepatic triacylglycerol content and unexpectedly increased total DAG content. Mogat1 inhibition also increased both membrane and cytosolic compartment DAG levels. However, Mogat1 ASO treatment significantly improved glucose tolerance and hepatic insulin signaling in obese mice. In summary, inactivation of hepatic MGAT activity, which is markedly increased in obese mice, improved glucose tolerance and hepatic insulin signaling independent of changes in body weight, intrahepatic DAG and TAG content, and PKC signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Mice with an adipocyte-specific lipin 1 separation-of-function allele reveal unexpected roles for phosphatidic acid in metabolic regulation

Mayurranjan S. Mitra; Zhouji Chen; Hongmei Ren; Thurl E. Harris; Kari T. Chambers; Angela M. Hall; Karim Nadra; Samuel Klein; Roman Chrast; Xiong Su; Andrew J. Morris; Brian N. Finck

Lipin 1 is a coregulator of DNA-bound transcription factors and a phosphatidic acid (PA) phosphatase (PAP) enzyme that catalyzes a critical step in the synthesis of glycerophospholipids. Lipin 1 is highly expressed in adipocytes, and constitutive loss of lipin 1 blocks adipocyte differentiation; however, the effects of Lpin1 deficiency in differentiated adipocytes are unknown. Here we report that adipocyte-specific Lpin1 gene recombination unexpectedly resulted in expression of a truncated lipin 1 protein lacking PAP activity but retaining transcriptional regulatory function. Loss of lipin 1-mediated PAP activity in adipocytes led to reduced glyceride synthesis and increased PA content. Characterization of the deficient mice also revealed that lipin 1 normally modulates cAMP-dependent signaling through protein kinase A to control lipolysis by metabolizing PA, which is an allosteric activator of phosphodiesterase 4 and the molecular target of rapamycin. Consistent with these findings, lipin 1 expression was significantly related to adipose tissue lipolytic rates and protein kinase A signaling in adipose tissue of obese human subjects. Taken together, our findings identify lipin 1 as a reciprocal regulator of triglyceride synthesis and hydrolysis in adipocytes, and suggest that regulation of lipolysis by lipin 1 is mediated by PA-dependent modulation of phosphodiesterase 4.


Journal of Biological Chemistry | 2009

Repair of Nitric Oxide-damaged DNA in β-Cells Requires JNK-dependent GADD45α Expression

Katherine J. Hughes; Gordon P. Meares; Kari T. Chambers; John A. Corbett

Proinflammatory cytokines induce nitric oxide-dependent DNA damage and ultimately β-cell death. Not only does nitric oxide cause β-cell damage, it also activates a functional repair process. In this study, the mechanisms activated by nitric oxide that facilitate the repair of damaged β-cell DNA are examined. JNK plays a central regulatory role because inhibition of this kinase attenuates the repair of nitric oxide-induced DNA damage. p53 is a logical target of JNK-dependent DNA repair; however, nitric oxide does not stimulate p53 activation or accumulation in β-cells. Further, knockdown of basal p53 levels does not affect DNA repair. In contrast, expression of growth arrest and DNA damage (GADD) 45α, a DNA repair gene that can be regulated by p53-dependent and p53-independent pathways, is stimulated by nitric oxide in a JNK-dependent manner, and knockdown of GADD45α expression attenuates the repair of nitric oxide-induced β-cell DNA damage. These findings show that β-cells have the ability to repair nitric oxide-damaged DNA and that JNK and GADD45α mediate the p53-independent repair of this DNA damage.


Molecular metabolism | 2013

PGC-1β and ChREBP partner to cooperatively regulate hepatic lipogenesis in a glucose concentration-dependent manner

Kari T. Chambers; Zhouji Chen; Ling Lai; Teresa C. Leone; Howard C. Towle; Anastasia Kralli; Peter A. Crawford; Brian N. Finck

Peroxisome proliferator-activated receptorγ coactivators (PGC-1α and PGC-1β) play important roles in the transcriptional regulation of intermediary metabolism. To evaluate the effects of overexpressing PGC-1α or PGC-1β at physiologic levels in liver, we generated transgenic mice with inducible overexpression of PGC-1α or PGC-1β. Gene expression array profiling revealed that whereas both PGC-1 family proteins induced mitochondrial oxidative enzymes, the expression of several genes involved in converting glucose to fatty acid was induced by PGC-1β, but not PGC-1α. The increased expression of enzymes involved in carbohydrate utilization and de novo lipogenesis by PGC-1β required carbohydrate response element binding protein (ChREBP). The interaction between PGC-1β and ChREBP, as well as PGC-1β occupancy of the liver-type pyruvate kinase promoter, was influenced by glucose concentration and liver-specific PGC-1β(-/-) hepatocytes were refractory to the lipogenic response to high glucose conditions. These data suggest that PGC-1β-mediated coactivation of ChREBP is involved in the lipogenic response to hyperglycemia.


Journal of the American Heart Association | 2014

Dysferlin Mediates the Cytoprotective Effects of TRAF2 Following Myocardial Ischemia Reperfusion Injury

Huei-Ping Tzeng; Sarah Evans; Feng Gao; Kari T. Chambers; Veli K. Topkara; Natarajan Sivasubramanian; Philip M. Barger; Douglas L. Mann

Background We have demonstrated that tumor necrosis factor (TNF) receptor‐associated factor 2 (TRAF2), a scaffolding protein common to TNF receptors 1 and 2, confers cytoprotection in the heart. However, the mechanisms for the cytoprotective effects of TRAF2 are not known. Methods/Results Mice with cardiac‐restricted overexpression of low levels of TRAF2 (MHC‐TRAF2LC) and a dominant negative TRAF2 (MHC‐TRAF2DN) were subjected to ischemia (30‐minute) reperfusion (60‐minute) injury (I/R), using a Langendorff apparatus. MHC‐TRAF2LC mice were protected against I/R injury as shown by a significant ≈27% greater left ventricular (LV) developed pressure after I/R, whereas mice with impaired TRAF2 signaling had a significantly ≈38% lower LV developed pressure, a ≈41% greater creatine kinase (CK) release, and ≈52% greater Evans blue dye uptake after I/R, compared to LM. Transcriptional profiling of MHC‐TRAF2LC and MHC‐TRAF2DN mice identified a calcium‐triggered exocytotic membrane repair protein, dysferlin, as a potential cytoprotective gene responsible for the cytoprotective effects of TRAF2. Mice lacking dysferlin had a significant ≈39% lower LV developed pressure, a ≈20% greater CK release, and ≈29% greater Evans blue dye uptake after I/R, compared to wild‐type mice, thus phenocopying the response to tissue injury in the MHC‐TRAF2DN mice. Moreover, breeding MHC‐TRAF2LC onto a dysferlin‐null background significantly attenuated the cytoprotective effects of TRAF2 after I/R injury. Conclusion The study shows that dysferlin, a calcium‐triggered exocytotic membrane repair protein, is required for the cytoprotective effects of TRAF2‐mediated signaling after I/R injury.

Collaboration


Dive into the Kari T. Chambers's collaboration.

Top Co-Authors

Avatar

Brian N. Finck

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Angela M. Hall

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kyle S. McCommis

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Zhouji Chen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

George G. Schweitzer

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Xiong Su

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Attila Kovacs

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Bettina Mittendorfer

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Carla J. Weinheimer

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge