Terri Pietka
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Terri Pietka.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Elisa Fabbrini; Faidon Magkos; B. Selma Mohammed; Terri Pietka; Nada A. Abumrad; Bruce W. Patterson; Adewole L. Okunade; Samuel Klein
Visceral adipose tissue (VAT) is an important risk factor for obesity-related metabolic disorders. Therefore, a reduction in VAT has become a key goal in obesity management. However, VAT is correlated with intrahepatic triglyceride (IHTG) content, so it is possible that IHTG, not VAT, is a better marker of metabolic disease. We determined the independent association of IHTG and VAT to metabolic function, by evaluating groups of obese subjects, who differed in IHTG content (high or normal) but matched on VAT volume or differed in VAT volume (high or low) but matched on IHTG content. Stable isotope tracer techniques and the euglycemic–hyperinsulinemic clamp procedure were used to assess insulin sensitivity and very-low-density lipoprotein–triglyceride (VLDL-TG) secretion rate. Tissue biopsies were obtained to evaluate cellular factors involved in ectopic triglyceride accumulation. Hepatic, adipose tissue and muscle insulin sensitivity were 41, 13, and 36% lower (P < 0.01), whereas VLDL-triglyceride secretion rate was almost double (P < 0.001), in subjects with higher than normal IHTG content, matched on VAT. No differences in insulin sensitivity or VLDL-TG secretion were observed between subjects with different VAT volumes, matched on IHTG content. Adipose tissue CD36 expression was lower (P < 0.05), whereas skeletal muscle CD36 expression was higher (P < 0.05), in subjects with higher than normal IHTG. These data demonstrate that IHTG, not VAT, is a better marker of the metabolic derangements associated with obesity. Furthermore, alterations in tissue fatty acid transport could be involved in the pathogenesis of ectopic triglyceride accumulation by redirecting plasma fatty acid uptake from adipose tissue toward other tissues.
Diabetes | 2010
Marleen Kars; Ling Yang; Margaret F. Gregor; B. Selma Mohammed; Terri Pietka; Brian N. Finck; Bruce W. Patterson; Jay D. Horton; Bettina Mittendorfer; Goekhan S. Hotamisligil; Samuel Klein
OBJECTIVE Insulin resistance is commonly associated with obesity. Studies conducted in obese mouse models found that endoplasmic reticulum (ER) stress contributes to insulin resistance, and treatment with tauroursodeoxycholic acid (TUDCA), a bile acid derivative that acts as a chemical chaperone to enhance protein folding and ameliorate ER stress, increases insulin sensitivity. The purpose of this study was to determine the effect of TUDCA therapy on multiorgan insulin action and metabolic factors associated with insulin resistance in obese men and women. RESEARCH DESIGN AND METHODS Twenty obese subjects ([means ± SD] aged 48 ± 11 years, BMI 37 ± 4 kg/m2) were randomized to 4 weeks of treatment with TUDCA (1,750 mg/day) or placebo. A two-stage hyperinsulinemic-euglycemic clamp procedure in conjunction with stable isotopically labeled tracer infusions and muscle and adipose tissue biopsies were used to evaluate in vivo insulin sensitivity, cellular factors involved in insulin signaling, and cellular markers of ER stress. RESULTS Hepatic and muscle insulin sensitivity increased by ∼30% (P < 0.05) after treatment with TUDCA but did not change after placebo therapy. In addition, therapy with TUDCA, but not placebo, increased muscle insulin signaling (phosphorylated insulin receptor substrateTyr and AktSer473 levels) (P < 0.05). Markers of ER stress in muscle or adipose tissue did not change after treatment with either TUDCA or placebo. CONCLUSIONS These data demonstrate that TUDCA might be an effective pharmacological approach for treating insulin resistance. Additional studies are needed to evaluate the target cells and mechanisms responsible for this effect.
Gastroenterology | 2013
Elisa Fabbrini; Marina Cella; Steve A. Mccartney; Anja Fuchs; Nada A. Abumrad; Terri Pietka; Zhouji Chen; Brian N. Finck; Dong Ho Han; Faidon Magkos; Caterina Conte; David Bradley; Gemma Fraterrigo; J. Christopher Eagon; Bruce W. Patterson; Marco Colonna; Samuel Klein
BACKGROUND & AIMS An increased number of macrophages in adipose tissue is associated with insulin resistance and metabolic dysfunction in obese people. However, little is known about other immune cells in adipose tissue from obese people, and whether they contribute to insulin resistance. We investigated the characteristics of T cells in adipose tissue from metabolically abnormal insulin-resistant obese (MAO) subjects, metabolically normal insulin-sensitive obese (MNO) subjects, and lean subjects. Insulin sensitivity was determined by using the hyperinsulinemic euglycemic clamp procedure. METHODS We assessed plasma cytokine concentrations and subcutaneous adipose tissue CD4(+) T-cell populations in 9 lean, 12 MNO, and 13 MAO subjects. Skeletal muscle and liver samples were collected from 19 additional obese patients undergoing bariatric surgery to determine the presence of selected cytokine receptors. RESULTS Adipose tissue from MAO subjects had 3- to 10-fold increases in numbers of CD4(+) T cells that produce interleukin (IL)-22 and IL-17 (a T-helper [Th] 17 and Th22 phenotype) compared with MNO and lean subjects. MAO subjects also had increased plasma concentrations of IL-22 and IL-6. Receptors for IL-17 and IL-22 were expressed in human liver and skeletal muscle samples. IL-17 and IL-22 inhibited uptake of glucose in skeletal muscle isolated from rats and reduced insulin sensitivity in cultured human hepatocytes. CONCLUSIONS Adipose tissue from MAO individuals contains increased numbers of Th17 and Th22 cells, which produce cytokines that cause metabolic dysfunction in liver and muscle in vitro. Additional studies are needed to determine whether these alterations in adipose tissue T cells contribute to the pathogenesis of insulin resistance in obese people.
Journal of Biological Chemistry | 2007
David J. Mancuso; Harold F. Sims; Xianlin Han; Christopher M. Jenkins; Shao Ping Guan; Kui Yang; Sung Ho Moon; Terri Pietka; Nada A. Abumrad; Paul H. Schlesinger; Richard W. Gross
Previously, we identified a novel calcium-independent phospholipase, designated calcium-independent phospholipase A2 γ (iPLA2γ), which possesses dual mitochondrial and peroxisomal subcellular localization signals. To identify the roles of iPLA2γ in cellular bioenergetics, we generated mice null for the iPLA2γ gene by eliminating the active site of the enzyme through homologous recombination. Mice null for iPLA2γ display multiple bioenergetic dysfunctional phenotypes, including 1) growth retardation, 2) cold intolerance, 3) reduced exercise endurance, 4) greatly increased mortality from cardiac stress after transverse aortic constriction, 5) abnormal mitochondrial function with a 65% decrease in ascorbate-induced Complex IV-mediated oxygen consumption, and 6) a reduction in myocardial cardiolipin content accompanied by an altered cardiolipin molecular species composition. We conclude that iPLA2γ is essential for maintaining efficient bioenergetic mitochondrial function through tailoring mitochondrial membrane lipid metabolism and composition.
Journal of Biological Chemistry | 2008
Zaher Nahlé; Michael Hsieh; Terri Pietka; Chris T. Coburn; Paul Grimaldi; Michael Q. Zhang; Debopriya Das; Nada A. Abumrad
The transcription factor FoxO1 contributes to the metabolic adaptation to fasting by suppressing muscle oxidation of glucose, sparing it for glucose-dependent tissues. Previously, we reported that FoxO1 activation in C2C12 muscle cells recruits the fatty acid translocase CD36 to the plasma membrane and increases fatty acid uptake and oxidation. This, together with FoxO1 induction of lipoprotein lipase, would promote the reliance on fatty acid utilization characteristic of the fasted muscle. Here, we show that CD36-mediated fatty acid uptake, in turn, up-regulates protein levels and activity of FoxO1 as well as its target PDK4, the negative regulator of glucose oxidation. Increased fatty acid flux or enforced CD36 expression in C2C12 cells is sufficient to induce FoxO1 and PDK4, whereas CD36 knockdown has opposite effects. In vivo, CD36 loss blunts fasting induction of FoxO1 and PDK4 and the associated suppression of glucose oxidation. Importantly, CD36-dependent regulation of FoxO1 is mediated by the nuclear receptor PPARδ/β. Loss of PPARδ/β phenocopies CD36 deficiency in blunting fasting induction of muscle FoxO1 and PDK4 in vivo. Expression of PPARδ/β in C2C12 cells, like that of CD36, robustly induces FoxO1 and suppresses glucose oxidation, whereas co-expression of a dominant negative PPARδ/β compromises FoxO1 induction. Finally, several PPRE sites were identified in the FoxO1 promoter, which was responsive to PPARδ/β. Agonists of PPARδ/β were sufficient to confer responsiveness and transactivate the heterologous FoxO1 promoter but not in the presence of dominant negative PPARδ/β. Taken together, our findings suggest that CD36-dependent FA activation of PPARδ/β results in the transcriptional regulation of FoxO1 as well as PDK4, recently shown to be a direct PPARδ/β target. FoxO1 in turn can regulate CD36, lipoprotein lipase, and PDK4, reinforcing the action of PPARδ/β to increase muscle reliance on FA. The findings could have implications in the chronic abnormalities of fatty acid metabolism associated with obesity and diabetes.
Diabetes | 2007
Tahar Hajri; Angela M. Hall; Dalan R. Jensen; Terri Pietka; Victor A. Drover; Huan Tao; Robert H. Eckel; Nada A. Abumrad
Leptin plays an important role in regulating energy expenditure in response to food intake, but nutrient regulation of leptin is incompletely understood. In this study using in vivo and in vitro approaches, we examined the role of fatty acid uptake in modulating leptin expression and production. Leptin levels are doubled in the CD36-null mouse, which has impaired cellular fatty acid uptake despite a 40% decrease in fat mass. The CD36-null mouse is protected from diet-induced weight gain but not from that consequent to leptin deficiency. Leptin secretion in the CD36-null mouse is strongly responsive to glucose intake, whereas a blunted response is observed in the wild-type mouse. This indicates that leptin regulation integrates opposing influences from glucose and fatty acid and loss of fatty acid inhibition allows unsuppressed stimulation by glucose/insulin. Fatty acid inhibition of basal and insulin-stimulated leptin release is linked to CD36-facilitated fatty acid flux, which is important for fatty acid activation of peroxisome proliferator–activated receptor γ and likely contributes to the nutrient sensing function of adipocytes. Fatty acid uptake also may modulate adipocyte leptin signaling. The ratio of phosphorylated to unphosphorylated signal transducer and activator of transcription 3, an index of leptin activity, is increased in CD36-null fat tissue disproportionately to leptin levels. In addition, expression of leptin-sensitive fatty acid oxidative enzymes is enhanced. Targeting adipocyte CD36 may offer a way to uncouple leptin production and adiposity.
Journal of Lipid Research | 2012
Angela M. Hall; Kou Kou; Zhouji Chen; Terri Pietka; Mrudula Kumar; Kevin M. Korenblat; Kyuha Lee; Kay Ahn; Elisa Fabbrini; Samuel Klein; Bryan Goodwin; Brian N. Finck
Intrahepatic lipid accumulation is extremely common in obese subjects and is associated with the development of insulin resistance and diabetes. Hepatic diacylglycerol and triacylglycerol synthesis predominantly occurs through acylation of glycerol-3-phosphate. However, an alternative pathway for synthesizing diacylglycerol from monoacylglycerol acyltransferases (MGAT) could also contribute to hepatic glyceride pools. MGAT activity and the expression of the three genes encoding MGAT enzymes (MOGAT1, MOGAT2, and MOGAT3) were determined in liver biopsies from obese human subjects before and after gastric bypass surgery. MOGAT expression was also assessed in liver of subjects with nonalcoholic fatty liver disease (NAFLD) or control livers. All MOGAT genes were expressed in liver, and hepatic MGAT activity was readily detectable in liver lysates. The hepatic expression of MOGAT3 was highly correlated with MGAT activity, whereas MOGAT1 and MOGAT2 expression was not, and knockdown of MOGAT3 expression attenuated MGAT activity in a liver-derived cell line. Marked weight loss following gastric bypass surgery was associated with a significant reduction in MOGAT2 and MOGAT3 expression, which were also overexpressed in NAFLD subjects. These data suggest that the MGAT pathway is active and dynamically regulated in human liver and could be an important target for pharmacologic intervention for the treatment of obesity-related insulin resistance and NAFLD.
Journal of Biological Chemistry | 2010
David J. Mancuso; Harold F. Sims; Kui Yang; Michael A. Kiebish; Xiong Su; Christopher M. Jenkins; Shaoping Guan; Sung Ho Moon; Terri Pietka; Fatiha Nassir; Timothy Schappe; Kristin Moore; Xianlin Han; Nada A. Abumrad; Richard W. Gross
Phospholipases are critical enzyme mediators participating in many aspects of cellular function through modulating the generation of lipid 2nd messengers, membrane physical properties, and cellular bioenergetics. Here, we demonstrate that mice null for calcium-independent phospholipase A2γ (iPLA2γ−/−) are completely resistant to high fat diet-induced weight gain, adipocyte hypertrophy, hyperinsulinemia, and insulin resistance, which occur in iPLA2γ+/+ mice after high fat feeding. Notably, iPLA2γ−/− mice were lean, demonstrated abdominal lipodystrophy, and remained insulin-sensitive despite having a marked impairment in glucose-stimulated insulin secretion after high fat feeding. Respirometry of adipocyte explants from iPLA2γ−/− mice identified increased rates of oxidation of multiple different substrates in comparison with adipocyte explants from wild-type littermates. Shotgun lipidomics of adipose tissue from wild-type mice demonstrated the anticipated 2-fold increase in triglyceride content after high fat feeding. In sharp contrast, the adipocyte triglyceride content was identical in iPLA2γ−/− mice fed either a standard diet or a high fat diet. Respirometry of skeletal muscle mitochondria from iPLA2γ−/− mice demonstrated marked decreases in state 3 respiration using multiple substrates whose metabolism was uncoupled from ATP production. Shotgun lipidomics of skeletal muscle revealed a decreased content of cardiolipin with an altered molecular species composition thereby identifying the mechanism underlying mitochondrial uncoupling in the iPLA2γ−/− mouse. Collectively, these results identify iPLA2γ as an obligatory upstream enzyme that is necessary for efficient electron transport chain coupling and energy production through its participation in the alterations of cellular bioenergetics that promote the development of the metabolic syndrome.
Journal of Biological Chemistry | 2013
Ondrej Kuda; Terri Pietka; Zuzana Demianová; Eva Kudova; Josef Cvačka; Jan Kopecky; Nada A. Abumrad
Background: Mechanism of CD36 inhibition by sulfo-N-succinimidyl oleate (SSO) was explored using mass spectrometry and mutagenesis. Results: SSO binds lysine 164 and inhibits uptake of fatty acids and oxLDL. Conclusion: Lysine 164 is important for CD36-mediated fatty acid uptake and Ca2+ signaling. Significance: Fatty acids and oxLDL bind to the same site within a hydrophobic pocket of CD36 shared by several lipid ligands. FAT/CD36 is a multifunctional glycoprotein that facilitates long-chain fatty acid (FA) uptake by cardiomyocytes and adipocytes and uptake of oxidized low density lipoproteins (oxLDL) by macrophages. CD36 also mediates FA-induced signaling to increase intracellular calcium in various cell types. The membrane-impermeable sulfo-N-hydroxysuccinimidyl (NHS) ester of oleate (SSO) irreversibly binds CD36 and has been widely used to inhibit CD36-dependent FA uptake and signaling to calcium. The inhibition mechanism and whether SSO modification of CD36 involves the FA-binding site remain unexplored. CHO cells expressing human CD36 were SSO-treated, and the protein was pulled down, deglycosylated, and resolved by electrophoresis. The CD36 band was extracted from the gel and digested for analysis by mass spectrometry. NHS derivatives react with primary or secondary amines on proteins to yield stable amide or imide bonds. Two oleoylated peptides, found only in SSO-treated samples, were identified with high contribution and confidence scores as carrying oleate modification of Lys-164. Lysine 164 lies within a predicted CD36 binding domain for FA and oxLDL. CHO cells expressing CD36 with mutated Lys-164 had impaired CD36 function in FA uptake and FA-induced calcium release from the endoplasmic reticulum, supporting the importance of Lys-164 for both FA effects. Furthermore, consistent with the importance of Lys-164 for oxLDL binding, SSO inhibited oxLDL uptake by macrophages. In conclusion, SSO accesses Lys-164 in the FA-binding site on CD36, and initial modeling of this site is presented. The data suggest competition between FA and oxLDL for access to the CD36 binding pocket.
Diabetes | 2015
Dmitri Samovski; Jingyu Sun; Terri Pietka; Richard W. Gross; Robert H. Eckel; Xiong Su; Philip D. Stahl; Nada A. Abumrad
Increases in muscle energy needs activate AMPK and induce sarcolemmal recruitment of the fatty acid (FA) translocase CD36. The resulting rises in FA uptake and FA oxidation are tightly correlated, suggesting coordinated regulation. We explored the possibility that membrane CD36 signaling might influence AMPK activation. We show, using several cell types, including myocytes, that CD36 expression suppresses AMPK, keeping it quiescent, while it mediates AMPK activation by FA. These dual effects reflect the presence of CD36 in a protein complex with the AMPK kinase LKB1 (liver kinase B1) and the src kinase Fyn. This complex promotes Fyn phosphorylation of LKB1 and its nuclear sequestration, hindering LKB1 activation of AMPK. FA interaction with CD36 dissociates Fyn from the protein complex, allowing LKB1 to remain cytosolic and activate AMPK. Consistent with this, CD36−/− mice have constitutively active muscle and heart AMPK and enhanced FA oxidation of endogenous triglyceride stores. The molecular mechanism described, whereby CD36 suppresses AMPK, with FA binding to CD36 releasing this suppression, couples AMPK activation to FA availability and would be important for the maintenance of cellular FA homeostasis. Its dysfunction might contribute to the reported association of CD36 variants with metabolic complications of obesity in humans.