Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert C. Huebert is active.

Publication


Featured researches published by Robert C. Huebert.


Journal of Clinical Investigation | 2010

Neuropilin-1 promotes cirrhosis of the rodent and human liver by enhancing PDGF/TGF-β signaling in hepatic stellate cells

Sheng Cao; Usman Yaqoob; Amitava Das; Uday Shergill; Kumaravelu Jagavelu; Robert C. Huebert; Chittaranjan Routray; Soha Saoud Abdelmoneim; Meher M. Vasdev; Edward B. Leof; Michael R. Charlton; Ryan J. Watts; Debabrata Mukhopadhyay; Vijay H. Shah

PDGF-dependent hepatic stellate cell (HSC) recruitment is an essential step in liver fibrosis and the sinusoidal vascular changes that accompany this process. However, the mechanisms that regulate PDGF signaling remain incompletely defined. Here, we found that in two rat models of liver fibrosis, the axonal guidance molecule neuropilin-1 (NRP-1) was upregulated in activated HSCs, which exhibit the highly motile myofibroblast phenotype. Additionally, NRP-1 colocalized with PDGF-receptor beta (PDGFRbeta) in HSCs both in the injury models and in human and rat HSC cell lines. In human HSCs, siRNA-mediated knockdown of NRP-1 attenuated PDGF-induced chemotaxis, while NRP-1 overexpression increased cell motility and TGF-beta-dependent collagen production. Similarly, mouse HSCs genetically modified to lack NRP-1 displayed reduced motility in response to PDGF treatment. Immunoprecipitation and biochemical binding studies revealed that NRP-1 increased PDGF binding affinity for PDGFRbeta-expressing cells and promoted downstream signaling. An NRP-1 neutralizing Ab ameliorated recruitment of HSCs, blocked liver fibrosis in a rat model of liver injury, and also attenuated VEGF responses in cultured liver endothelial cells. In addition, NRP-1 overexpression was observed in human specimens of liver cirrhosis caused by both hepatitis C and steatohepatitis. These studies reveal a role for NRP-1 as a modulator of multiple growth factor targets that regulate liver fibrosis and the vascular changes that accompany it and may have broad implications for liver cirrhosis and myofibroblast biology in a variety of other organ systems and disease conditions.


Journal of Hepatology | 2012

Intestinal decontamination inhibits TLR4 dependent fibronectin-mediated cross-talk between stellate cells and endothelial cells in liver fibrosis in mice.

Qiang Zhu; Li Zou; Kumaravelu Jagavelu; Douglas A. Simonetto; Robert C. Huebert; Zhi Dong Jiang; Herbert L. DuPont; Vijay H. Shah

BACKGROUND & AIMS Liver fibrosis is associated with angiogenesis and leads to portal hypertension. Certain antibiotics reduce complications of liver failure in humans, however, the effects of antibiotics on the pathologic alterations of the disease are not fully understood. The aim of this study was to test whether the non-absorbable antibiotic rifaximin could attenuate fibrosis progression and portal hypertension in vivo, and explore potential mechanisms in vitro. METHODS The effect of rifaximin on portal pressure, fibrosis, and angiogenesis was examined in wild type and Toll-like receptor 4 (TLR4) mutant mice after bile duct ligation (BDL). In vitro studies were carried out to evaluate the effect of the bacterial product and TLR agonist lipopolysaccharide (LPS) on paracrine interactions between hepatic stellate cells (HSC) and liver endothelial cells (LEC) that lead to fibrosis and portal hypertension. RESULTS Portal pressure, fibrosis, and angiogenesis were significantly lower in BDL mice receiving rifaximin compared to BDL mice receiving vehicle. Studies in TLR4 mutant mice confirmed that the effect of rifaximin was dependent on LPS/TLR4 pathway. Fibronectin (FN) was increased in the BDL liver and was reduced by rifaximin administration and thus, was explored further in vitro as a potential mediator of paracrine interactions of HSC and LEC. In vitro, LPS promoted FN production from HSC. Furthermore, HSC-derived FN promoted LEC migration and angiogenesis. CONCLUSIONS These studies expand our understanding of the relationship of intestinal microbiota with fibrosis development by identifying FN as a TLR4 dependent mediator of the matrix and vascular changes that characterize cirrhosis.


Hepatology | 2011

Complementary vascular and matrix regulatory pathways underlie the beneficial mechanism of action of sorafenib in liver fibrosis.

Dominique Thabut; Chittaranjan Routray; Gwen Lomberk; Uday Shergill; Kevin J. Glaser; Robert C. Huebert; Leena Patel; Tetyana V. Masyuk; Boris Blechacz; Andrew J. Vercnocke; Erik L. Ritman; Richard L. Ehman; Raul Urrutia; Vijay H. Shah

Paracrine signaling between hepatic stellate cells (HSCs) and liver endothelial cells (LECs) modulates fibrogenesis, angiogenesis, and portal hypertension. However, mechanisms regulating these processes are not fully defined. Sorafenib is a receptor tyrosine kinase inhibitor that blocks growth factor signaling in tumor cells but also displays important and not yet fully characterized effects on liver nonparenchymal cells including HSCs and LECs. The aim of this study was to test the hypothesis that sorafenib influences paracrine signaling between HSCs and LECs and thereby regulates matrix and vascular changes associated with chronic liver injury. Complementary magnetic resonance elastography, micro–computed tomography, and histochemical analyses indicate that sorafenib attenuates the changes in both matrix and vascular compartments that occur in response to bile duct ligation–induced liver injury in rats. Cell biology studies demonstrate that sorafenib markedly reduces cell–cell apposition and junctional complexes, thus reducing the proximity typically observed between these sinusoidal barrier cells. At the molecular level, sorafenib down‐regulates angiopoietin‐1 and fibronectin, both released by HSCs in a manner dependent on the transcription factor Kruppel‐like factor 6 , suggesting that this pathway underlies both matrix and vascular changes associated with chronic liver disease. Conclusion: Collectively, the results of this study demonstrate that sorafenib inhibits both matrix restructuring and vascular remodeling that accompany chronic liver diseases and characterize cell and molecular mechanisms underlying this effect. These data may help to refine future therapies for advanced gastrointestinal and liver diseases characterized by abundant fibrosis and neovascularization. (HEPATOLOGY 2011;)


Journal of Biological Chemistry | 2012

Fibronectin Induces Endothelial Cell Migration through β1 Integrin and Src-dependent Phosphorylation of Fibroblast Growth Factor Receptor-1 at Tyrosines 653/654 and 766

Li Zou; Sheng Cao; Ningling Kang; Robert C. Huebert; Vijay H. Shah

Background: Both matrix and growth factors regulate endothelial cell chemotaxis. Results: The matrix protein fibronectin can activate fibroblast growth factor receptor-1 (FGFR1) through β1 integrin and Src, which requires tyrosines 653/654 and 766 on FGFR1, thereby leading to cell migration. Conclusion: Fibronectin induces cell migration through FGFR1 transactivation. Significance: This work highlights mechanisms by which the extracellular matrix regulates cell behavior through transactivation of receptor tyrosine kinases. The extracellular matrix microenvironment regulates cell phenotype and function. One mechanism by which this is achieved is the transactivation of receptor tyrosine kinases by specific matrix molecules. Here, we demonstrate that the provisional matrix protein, fibronectin (FN), activates fibroblast growth factor (FGF) receptor-1 (FGFR1) independent of FGF ligand in liver endothelial cells. FN activation of FGFR1 requires β1 integrin, as evidenced by neutralizing antibody and siRNA-based studies. Complementary genetic and pharmacologic approaches identify that the non-receptor tyrosine kinase Src is required for FN transactivation of FGFR1. Whereas FGF ligand-induced phosphorylation of FGFR1 preferentially activates ERK, FN-induced phosphorylation of FGFR1 preferentially activates AKT, indicating differential downstream signaling of FGFR1 in response to alternate stimuli. Mutation analysis of known tyrosine residues of FGFR1 reveals that tyrosine 653/654 and 766 residues are required for FN-FGFR1 activation of AKT and chemotaxis. Thus, our study mechanistically dissects a new signaling pathway by which FN achieves endothelial cell chemotaxis, demonstrates how differential phosphorylation profiles of FGFR1 can achieve alternate downstream signals, and, more broadly, highlights the diversity of mechanisms by which the extracellular matrix microenvironment regulates cell behavior through transactivation of receptor tyrosine kinases.


Journal of Biological Chemistry | 2015

Exosome Adherence and Internalization by Hepatic Stellate Cells Triggers Sphingosine 1-Phosphate-dependent Migration

Ruisi Wang; Qian Ding; Usman Yaqoob; Thiago de Assuncao; Vikas K. Verma; Petra Hirsova; Sheng Cao; Debabrata Mukhopadhyay; Robert C. Huebert; Vijay H. Shah

Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals.


Laboratory Investigation | 2010

Immortalized liver endothelial cells: a cell culture model for studies of motility and angiogenesis

Robert C. Huebert; Kumaravelu Jagavelu; Ann Liebl; Bing Q. Huang; Patrick L. Splinter; Nicholas F. LaRusso; Raul Urrutia; Vijay H. Shah

Hepatic sinusoidal endothelial cells (HSECs) are a unique subpopulation of fenestrated endothelial cells lining the hepatic sinusoids and comprising the majority of endothelial cells within the liver. HSECs not only have important roles in blood clearance, vascular tone, and immunity, but also undergo pathological changes, contributing to fibrosis, angiogenesis, and portal hypertension. There are few cell culture models for in vitro studies of motility and angiogenesis as primary cells are time-consuming to isolate, are limited in number, and often lack features of pathological vasculature. The aim of this study was to generate an immortalized cell line derived from HSECs that mimic pathological vasculature and allows detailed molecular interventions to be pursued. HSECs were isolated from mouse liver using CD31-based immunomagnetic separation, immortalized with SV40 large T-antigen, and subcloned on the basis of their ability to endocytose the acetylated low-density lipoprotein (AcLDL). The resulting cell line, transformed sinusoidal endothelial cells (TSECs), maintains an endothelial phenotype as well as some HSEC-specific features. This is evidenced by typical microscopic features of endothelia, including formation of lamellipodia and filopodia, and a cobblestone morphology of cell monolayers. Electron microscopy showed maintenance of a limited number of fenestrae organized in sieve plates. TSECs express numerous endothelia-specific markers, including CD31 and von Willebrands factor (vWF), as detected by PCR array, immunoblotting, and immunofluorescence (IF). Functionally, TSECs maintain a number of key endothelial features, including migration in response to angiogenic factors, formation of vascular tubes, endocytosis of AcLDL, and remodeling of extracellular matrix. Their phenotype most closely resembles the pathological neovasculature associated with chronic liver disease, in which cells become proliferative, defenestrated, and angiogenic. Importantly, the cells can be transduced efficiently with viral vectors. TSECs should provide a reproducible cell culture model for high-throughput in vitro studies pertaining to a broad range of liver endothelial cell functions, but likely broader endothelial cell biology as well.


Hepatology | 2010

Aquaporin-1 facilitates angiogenic invasion in the pathological neovasculature that accompanies cirrhosis†

Robert C. Huebert; Meher M. Vasdev; Uday Shergill; Amitava Das; Bing Q. Huang; Michael R. Charlton; Nicholas F. LaRusso; Vijay H. Shah

Increasing evidence suggests that hepatic fibrosis and pathological angiogenesis are interdependent processes that occur in parallel. Endothelial cell invasion is requisite for angiogenesis, and thus studies of the mechanisms governing liver endothelial cell (LEC) invasion during cirrhosis are of great importance. Emerging research implicates amoeboid‐type motility and membrane blebbing as features that may facilitate invasion through matrix‐rich microenvironments. Aquaporins (AQPs) are integral membrane water channels, recognized for their importance in epithelial secretion and absorption. However, recent studies also suggest links between water transport and cell motility or invasion. Therefore, the purpose of this study was to test the hypothesis that AQP‐1 is involved in amoeboid motility and angiogenic invasion during cirrhosis. AQP‐1 expression and localization was examined in normal and cirrhotic liver tissues derived from human and mouse. AQP‐1 levels were modulated in LEC using retroviral overexpression or small interfering RNA (siRNA) knockdown and functional effects on invasion, membrane blebbing dynamics, and osmotic water permeability were assayed. Results demonstrate that AQP‐1 is up‐regulated in the small, angiogenic, neovasculature within the fibrotic septa of cirrhotic liver. AQP‐1 overexpression promotes fibroblast growth factor (FGF)‐induced dynamic membrane blebbing in LEC, which is sufficient to augment invasion through extracellular matrix. Additionally, AQP‐1 localizes to plasma membrane blebs, where it increases osmotic water permeability and locally facilitates the rapid, trans‐membrane flux of water. Conclusion: AQP‐1 enhances osmotic water permeability and FGF‐induced dynamic membrane blebbing in LEC and thereby drives invasion and pathological angiogenesis during cirrhosis. HEPATOLOGY 2010


Mayo Clinic Proceedings | 2014

Cellular Therapy for Liver Disease

Robert C. Huebert; Jorge Rakela

Regenerative medicine is energizing and empowering basic science and has the potential to dramatically transform health care in the future. Given the remarkable intrinsic regenerative properties of the liver, as well as widespread adoption of regenerative strategies for liver disease (eg, liver transplant, partial hepatectomy, living donor transplant), hepatology has always been at the forefront of clinical regenerative medicine. However, an expanding pool of patients awaiting liver transplant, a limited pool of donor organs, and finite applicability of the current surgical approaches have created a need for more refined and widely available regenerative medicine strategies. Although cell-based therapies have been used extensively for hematologic malignant diseases and other conditions, the potential application of cellular therapy for acute and chronic liver diseases has only more recently been explored. New understanding of the mechanisms of liver regeneration and repair, including activation of local stem/progenitor cells and contributions from circulating bone marrow-derived stem cells, provide the theoretical underpinnings for the rational use of cell-based therapies in clinical trials. In this review, we dissect the scientific rationale for various modalities of cell therapy for liver diseases being explored in animal models and review those tested in human clinical trials. We also attempt to clarify some of the important ongoing questions that need to be addressed in order to bring these powerful therapies to clinical translation. Discussions will cover transplant of hepatocytes and liver stem/progenitor cells as well as infusion or stimulation of bone marrow-derived stem cells. We also highlight tremendous scientific advances on the horizon, including the potential use of induced pluripotent stem cells and their derivatives as individualized regenerative therapy for liver disease.


American Journal of Pathology | 2011

Aquaporin-1 Promotes Angiogenesis, Fibrosis, and Portal Hypertension Through Mechanisms Dependent on Osmotically Sensitive MicroRNAs

Robert C. Huebert; Kumaravelu Jagavelu; Helen Hendrickson; Meher M. Vasdev; Juan Pablo Arab; Patrick L. Splinter; Christy E. Trussoni; Nicholas F. LaRusso; Vijay H. Shah

Changes in hepatic vasculature accompany fibrogenesis, and targeting angiogenic molecules often attenuates fibrosis in animals. Aquaporin-1 (AQP1) is a water channel, overexpressed in cirrhosis, that promotes angiogenesis by enhancing endothelial invasion. The effect of AQP1 on fibrogenesis in vivo and the mechanisms driving AQP1 expression during cirrhosis remain unclear. The purpose of this study was to test the effect of AQP1 deletion in cirrhosis and explore mechanisms regulating AQP1. After bile duct ligation, wild-type mice overexpress AQP1 that colocalizes with vascular markers and sites of robust angiogenesis. AQP1 knockout mice demonstrated reduced angiogenesis compared with wild-type mice, as evidenced by immunostaining and endothelial invasion/proliferation in vitro. Fibrosis and portal hypertension were attenuated based on immunostaining, portal pressure, and spleen/body weight ratio. AQP1 protein, but not mRNA, was induced by hyperosmolality in vitro, suggesting post-transcriptional regulation. Endothelial cells from normal or cirrhotic mice were screened for microRNA (miR) expression using an array and a quantitative PCR. miR-666 and miR-708 targeted AQP1 mRNA and were decreased in cirrhosis and in cells exposed to hyperosmolality, suggesting that these miRs mediate osmolar changes via AQP1. Binding of the miRs to the untranslated region of AQP1 was assessed using luciferase assays. In conclusion, AQP1 promotes angiogenesis, fibrosis, and portal hypertension after bile duct ligation and is regulated by osmotically sensitive miRs.


Laboratory Investigation | 2015

Development and characterization of human-induced pluripotent stem cell-derived cholangiocytes.

Thiago de Assuncao; Yan Sun; Nidhi Jalan-Sakrikar; Mary Drinane; Bing Q. Huang; Ying Li; Jaime Davila; Ruisi Wang; Steven P. O'Hara; Gwen Lomberk; Raul Urrutia; Yasuhiro Ikeda; Robert C. Huebert

Cholangiocytes are the target of a heterogeneous group of liver diseases known as the cholangiopathies. An evolving understanding of the mechanisms driving biliary development provides the theoretical underpinnings for rational development of induced pluripotent stem cell (iPSC)-derived cholangiocytes (iDCs). Therefore, the aims of this study were to develop an approach to generate iDCs and to fully characterize the cells in vitro and in vivo. Human iPSC lines were generated by forced expression of the Yamanaka pluripotency factors. We then pursued a stepwise differentiation strategy toward iDCs, using precise temporal exposure to key biliary morphogens, and we characterized the cells, using a variety of morphologic, molecular, cell biologic, functional, and in vivo approaches. Morphology shows a stepwise phenotypic change toward an epithelial monolayer. Molecular analysis during differentiation shows appropriate enrichment in markers of iPSC, definitive endoderm, hepatic specification, hepatic progenitors, and ultimately cholangiocytes. Immunostaining, western blotting, and flow cytometry demonstrate enrichment of multiple functionally relevant biliary proteins. RNA sequencing reveals that the transcriptome moves progressively toward that of human cholangiocytes. iDCs generate intracellular calcium signaling in response to ATP, form intact primary cilia, and self-assemble into duct-like structures in three-dimensional culture. In vivo, the cells engraft within mouse liver, following retrograde intrabiliary infusion. In summary, we have developed a novel approach to generate mature cholangiocytes from iPSCs. In addition to providing a model of biliary differentiation, iDCs represent a platform for in vitro disease modeling, pharmacologic testing, and individualized, cell-based, regenerative therapies for the cholangiopathies.

Collaboration


Dive into the Robert C. Huebert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge