Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela Serena Maione is active.

Publication


Featured researches published by Angela Serena Maione.


Journal of the American Heart Association | 2012

CaMK4 Gene Deletion Induces Hypertension

Gaetano Santulli; Ersilia Cipolletta; Daniela Sorriento; Carmine Del Giudice; Antonio Anastasio; Sara Monaco; Angela Serena Maione; Gianluigi Condorelli; Annibale Alessandro Puca; Bruno Trimarco; Maddalena Illario; Guido Iaccarino

Background The expression of calcium/calmodulin-dependent kinase IV (CaMKIV) was hitherto thought to be confined to the nervous system. However, a recent genome-wide analysis indicated an association between hypertension and a single-nucleotide polymorphism (rs10491334) of the human CaMKIV gene (CaMK4), which suggests a role for this kinase in the regulation of vascular tone. Methods and Results To directly assess the role of CaMKIV in hypertension, we characterized the cardiovascular phenotype of CaMK4−/− mice. They displayed a typical hypertensive phenotype, including high blood pressure levels, cardiac hypertrophy, vascular and kidney damage, and reduced tolerance to chronic ischemia and myocardial infarction compared with wild-type littermates. Interestingly, in vitro experiments showed the ability of this kinase to activate endothelial nitric oxide synthase. Eventually, in a population study, we found that the rs10491334 variant associates with a reduction in the expression levels of CaMKIV in lymphocytes from hypertensive patients. Conclusions Taken together, our results provide evidence that CaMKIV plays a pivotal role in blood pressure regulation through the control of endothelial nitric oxide synthase activity. (J Am Heart Assoc. 2012;1:e001081 doi: 10.1161/JAHA.112.001081.)


Endocrinology | 2010

Calmodulin-Dependent Kinase II Mediates Vascular Smooth Muscle Cell Proliferation and Is Potentiated by Extracellular Signal Regulated Kinase

Ersilia Cipolletta; Sara Monaco; Angela Serena Maione; L. Vitiello; Pietro Campiglia; Lucio Pastore; Carlo Franchini; E. Novellino; V. Limongelli; K. U. Bayer; Anthony R. Means; Guido Rossi; Bruno Trimarco; Guido Iaccarino; M. Illario

Vascular smooth muscle cell (VSMC) proliferation contributes to vascular remodeling in atherosclerosis and hypertension. Calcium-dependent signaling through calcium/calmodulin-dependent kinase II (CaMKII) and ERK1/2 activation plays an important role in the regulation of VSMC proliferation by agents such as alpha-adrenergic receptor agonists. Nevertheless, how the CaMKII and ERK pathways interact in VSMCs has yet to be characterized. The aim of the present study was to clarify this interaction in response to alpha(1)-adrenergic receptor-mediated VSMC proliferation. We discovered that phenylephrine stimulation resulted in complex formation between CaMKII and ERK in a manner that facilitated phosphorylation of both protein kinases. To assess the effects of CaMKII/ERK association on VSMC proliferation, we inhibited endogenous CaMKII either pharmacologically or by adenoviral-mediated gene transfer of a kinase-inactive CaMKII mutant. Inhibition of CaMKII activation but not CaMKII autonomous activity significantly decreased formation of the CaMKII/ERK complex. On the contrary, the expression of constitutively active CaMKII enhanced VSMC growth and CaMKII/ERK association. In addressing the mechanism of this effect, we found that CaMKII could not directly phosphorylate ERK but instead enhanced Raf1 activation. By contrast, ERK interaction with CaMKII facilitated CaMKII phosphorylation and promoted its nuclear localization. Our results reveal a critical role for CaMKII in VSMC proliferation and imply that CaMKII facilitates assembly of the Raf/MEK/ERK complex and that ERK enhances CaMKII activation and influences its subcellular localization.


PLOS ONE | 2015

Targeting the CaMKII/ERK Interaction in the Heart Prevents Cardiac Hypertrophy

Ersilia Cipolletta; Maria Rosaria Rusciano; Angela Serena Maione; Gaetano Santulli; Daniela Sorriento; Carmine Del Giudice; Michele Ciccarelli; Antonietta Franco; Catherine Crola; Pietro Campiglia; Marina Sala; Isabel Gomez-Monterrey; Nicola De Luca; Bruno Trimarco; Guido Iaccarino; Maddalena Illario

Aims Activation of Ca2+/Calmodulin protein kinase II (CaMKII) is an important step in signaling of cardiac hypertrophy. The molecular mechanisms by which CaMKII integrates with other pathways in the heart are incompletely understood. We hypothesize that CaMKII association with extracellular regulated kinase (ERK), promotes cardiac hypertrophy through ERK nuclear localization. Methods and Results In H9C2 cardiomyoblasts, the selective CaMKII peptide inhibitor AntCaNtide, its penetratin conjugated minimal inhibitory sequence analog tat-CN17β, and the MEK/ERK inhibitor UO126 all reduce phenylephrine (PE)-mediated ERK and CaMKII activation and their interaction. Moreover, AntCaNtide or tat-CN17β pretreatment prevented PE induced CaMKII and ERK nuclear accumulation in H9C2s and reduced the hypertrophy responses. To determine the role of CaMKII in cardiac hypertrophy in vivo, spontaneously hypertensive rats were subjected to intramyocardial injections of AntCaNtide or tat-CN17β. Left ventricular hypertrophy was evaluated weekly for 3 weeks by cardiac ultrasounds. We observed that the treatment with CaMKII inhibitors induced similar but significant reduction of cardiac size, left ventricular mass, and thickness of cardiac wall. The treatment with CaMKII inhibitors caused a significant reduction of CaMKII and ERK phosphorylation levels and their nuclear localization in the heart. Conclusion These results indicate that CaMKII and ERK interact to promote activation in hypertrophy; the inhibition of CaMKII-ERK interaction offers a novel therapeutic approach to limit cardiac hypertrophy.


Human Gene Therapy | 2012

Inhibition of Autophagy Enhances the Effects of E1A-Defective Oncolytic Adenovirus dl922–947 Against Glioma Cells In Vitro and In Vivo

Ginevra Botta; Carmela Passaro; Silvana Libertini; Antonella Abagnale; Sara Barbato; Angela Serena Maione; Gunnel Halldén; Francesco Beguinot; Pietro Formisano; Giuseppe Portella

Oncolytic viruses represent a novel therapeutic approach for aggressive tumors, such as glioblastoma multiforme, which are resistant to available treatments. Autophagy has been observed in cells infected with oncolytic viruses; however, its role in cell death/survival is unclear. To elucidate the potential therapeutic use of autophagy modulators in association with viral therapy, we analyzed autophagy induction in human glioma cell lines U373MG and U87MG infected with the oncolytic adenovirus dl922-947. dl922-947 infection triggered an autophagic cellular response, as shown by the development of acidic vesicular organelles, LC3-I→LC3-II conversion, and reduction of p62 levels. However, on infection, the Akt/mTOR/p70s6k pathway, which negatively regulates autophagy, was activated, whereas the ERK1/2 pathway, a positive regulator of autophagy, was inhibited. Accordingly, MEK inhibition by PD98059 sensitized glioma cells to dl922-947 effects, whereas autophagy induction by rapamycin protected cells from dl922-947-induced death. Treatment with two inhibitors of autophagy, chloroquine and 3-methyladenine, increased the cytotoxic effects of dl922-947 in vitro. In vivo, the growth of U87MG-induced xenografts was further reduced by adding chloroquine to the dl922-947 treatment. In conclusion, autophagy acts as a survival response in glioma cells infected with dl922-947, thus suggesting autophagy inhibitors as adjuvant/neoadjuvant drugs in oncolytic virus-based treatments.


European Journal of Medicinal Chemistry | 2013

Characterization of a selective CaMKII peptide inhibitor.

Isabel Gomez-Monterrey; Marina Sala; Maria Rosaria Rusciano; Sara Monaco; Angela Serena Maione; Guido Iaccarino; Paolo Tortorella; Anna Maria D'Ursi; Mario Scrima; Alfonso Carotenuto; Giuseppe De Rosa; Alessia Bertamino; Ermelinda Vernieri; Paolo Grieco; Ettore Novellino; Maddalena Illario; Pietro Campiglia

Analogs of potent CaMKinase II inhibitor, CaM-KNtide, were prepared to explore new structural requirements for the inhibitory activity. The full potency of CaMKII inhibition by CaM-KIINα is contained within a minimal region of 19 amino acids. Here, analysis of the homologous CaM-KIINβ showed that a 17 mer peptide (CN17β) was the shortest sequence that still retained useful inhibitory potency. Ala substitution of almost any residue of CN17β dramatically reduced potency, except for substitution of P3, R14, and V16. Fusion with the tat sequence generated the cell-penetrating inhibitor version tat-5. This tat-5 fusion peptide maintained selectivity for CaMKII over CaMKI and CaMKIV, and appeared to slightly further enhance potency (IC50 ∼30 nM). Within a breast cancer cell line and in primary human fibroblasts, tat-5 inhibited the Erk signaling pathway and proliferation without any measurable cytotoxicity. Structural analysis of CN17β by CD and NMR indicated an α-helix conformation in the Leu6-Arg11 segment well overlapping with the crystal structure of 21-residue segment of CaM-KNtide bound to the kinase domain of CaMKII.


Journal of Medicinal Chemistry | 2011

Design, synthesis, and cytotoxic evaluation of acyl derivatives of 3-aminonaphtho[2,3-b]thiophene-4,9-dione, a quinone-based system.

Isabel Gomez-Monterrey; Pietro Campiglia; Claudio Aquino; Alessia Bertamino; Ilaria Granata; Alfonso Carotenuto; Diego Brancaccio; Paola Stiuso; Ilaria Scognamiglio; M. Rosaria Rusciano; Angela Serena Maione; Maddalena Illario; Paolo Grieco; Bruno Maresca; Ettore Novellino

A series of 3-acyl derivatives of the dihydronaphtho[2,3-b]thiophen-4,9-dione system were studied with respect to cytotoxicity and topoisomerase II inhibitory activity. These analogues were designed as electron-deficient anthraquinone analogues with potential intercalation ability. Derivatives 3-(diethylamino)-N-(4,9-dioxo-4,9-dihydronaphtho[2,3-b]thiophen-3-yl)propanamide (11m) and 3-(2-(dimethylamino)ethylamino)-N-(4,9-dioxo-4,9-dihydronaphtho[2,3-b]thiophen-3-yl)propanamide (11p) showed a high efficacy in cell lines that were highly resistant to treatment with doxorubicin, such as MDA-MB435 (melanoma), IGROV (ovarian), and SF-295 (glioblastoma) human cell lines. Both compounds inhibit topoisomerase II mediated relaxation of DNA, while only 11p incites arrest at the S phase in Caco-2 cells, inducing a delay of cell cycle progression and an increase of cell differentiation. The ability of these derivatives to modulate small heat shock proteins and cardiotoxicy effects was also explored. In addition, the DNA-binding properties of these compounds were investigated and discussed.


Cellular Signalling | 2015

A novel crosstalk between calcium/calmodulin kinases II and IV regulates cell proliferation in myeloid leukemia cells

Sara Monaco; Maria Rosaria Rusciano; Angela Serena Maione; Maria Soprano; Rohini Gomathinayagam; Lance R. Todd; Pietro Campiglia; Salvatore Salzano; Lucio Pastore; Eleonora Leggiero; Donald C. Wilkerson; M Rocco; Guido Iaccarino; Uma Sankar; Maddalena Illario

CaMKs link transient increases in intracellular Ca(2+) with biological processes. In myeloid leukemia cells, CaMKII, activated by the bcr-abl oncogene, promotes cell proliferation. Inhibition of CaMKII activity restricts cell proliferation, and correlates with growth arrest and differentiation. The mechanism by which the inhibition of CaMKII results in growth arrest and differentiation in myeloid leukemia cells is still unknown. We report that inhibition of CaMKII activity results in an upregulation of CaMKIV mRNA and protein in leukemia cell lines. Conversely, expression of CaMKIV inhibits autophosphorylation and activation of CaMKII, and elicits G0/G1cell cycle arrest,impairing cell proliferation. Furthermore, U937 cells expressing CaMKIV show elevated levels of Cdk inhibitors p27(kip1) and p16(ink4a) and reduced levels of cyclins A, B1 and D1. These findings were also confirmed in the K562 leukemic cell line. The relationship between CaMKII and CaMKIV is also observed in primary acute myeloid leukemia (AML) cells, and it correlates with their immunophenotypic profile. Indeed, immature MO/M1 AML showed increased CaMKIV expression and decreased pCaMKII, whereas highly differentiated M4/M5 AML showed decreased CaMKIV expression and increased pCaMKII levels. Our data reveal a novel cross-talk between CaMKII and CaMKIV and suggest that CaMKII suppresses the expression of CaMKIV to promote leukemia cell proliferation.


Atherosclerosis | 2017

Cellular subtype expression and activation of CaMKII regulate the fate of atherosclerotic plaque

Angela Serena Maione; Ersilia Cipolletta; Daniela Sorriento; Francesco Borriello; Maria Soprano; Maria Rosaria Rusciano; Vittoria D'Esposito; Abdul Karim Markabaoui; Giovanni Domenico De Palma; Giovanni Martino; Lucio Maresca; Giuseppe Nobile; Pietro Campiglia; Pietro Formisano; Michele Ciccarelli; Gianni Marone; Bruno Trimarco; Guido Iaccarino; Maddalena Illario

BACKGROUND AND AIMS Atherosclerosis is a degenerative process of the arterial wall implicating activation of macrophages and proliferation of vascular smooth muscle cells. Calcium-calmodulin dependent kinase type II (CaMKII) in vascular smooth muscle cells (VSMCs) regulates proliferation, while in macrophages, this kinase governs diapedesis, infiltration and release of extracellular matrix enzymes. We aimed at understanding the possible role of CaMKII in atherosclerosis plaques to regulate plaque evolution towards stability or instability. METHODS Clinically defined stable and unstable plaques obtained from patients undergoing carotid end arteriectomy were processed for evaluation of CaMKs protein expression, activity and localization. RESULTS The larger content of CaMKII was found in CD14+myeloid cells that were more abundant in unstable rather than stable plaques. To test the biological effect of activated CD14+myeloid cells, VSMCs were exposed to the conditioned medium (CM) of macrophages extracted from carotid plaques. CM induced attenuation of CaMKs expression and activity in VSMCs, leading to the reduction of VSMCs proliferation. This appears to be due to the CaMKII dependent release of cytokines. CONCLUSIONS These results indicate a pivotal role of CaMKs in atherosclerosis by regulating activated myeloid cells on VSMCs activity. CaMKII could represent a possible target for therapeutic strategies based on macrophages specific inhibition for the stabilization of arteriosclerotic lesions.


Current Diabetes Reviews | 2015

Metabolic Syndrome and Aging: Calcium Signaling as Common Regulator

Maria Soprano; Maria Rosaria Rusciano; Michele Ciccarelli; Angela Serena Maione; Pietro Formisano; Maddalena Illario

Aging is one of the most important societal challenges that western societies face, as a result of longer life expectancy and reduced natality rates. Aging is a success story of our health and social systems, but raises sustainability issues that are linked to the increased need for services of older adults, due to the reduction of their independence and to the co-existence of multiple chronic diseases. The metabolic syndrome can be considered an age-related disease, since its prevalence increases with age. Current demographic trends in the population highlight aging-related dysfunctions that contribute to the onset of several metabolic diseases, and the need for innovative, effective and sustainable approaches. This review describes the correlation between the metabolic syndrome and aging, and the underlying common molecular mechanisms, focusing on calcium signaling and its crosstalks.


International Journal of Molecular Sciences | 2018

The Amino-Terminal Domain of GRK5 Inhibits Cardiac Hypertrophy through the Regulation of Calcium-Calmodulin Dependent Transcription Factors

Daniela Sorriento; Gaetano Santulli; Michele Ciccarelli; Angela Serena Maione; Maddalena Illario; Bruno Trimarco; Guido Iaccarino

We have recently demonstrated that the amino-terminal domain of G protein coupled receptor kinase (GRK) type 5, (GRK5-NT) inhibits NFκB activity in cardiac cells leading to a significant amelioration of LVH. Since GRK5-NT is known to bind calmodulin, this study aimed to evaluate the functional role of GRK5-NT in the regulation of calcium-calmodulin-dependent transcription factors. We found that the overexpression of GRK5-NT in cardiomyoblasts significantly reduced the activation and the nuclear translocation of NFAT and its cofactor GATA-4 in response to phenylephrine (PE). These results were confirmed in vivo in spontaneously hypertensive rats (SHR), in which intramyocardial adenovirus-mediated gene transfer of GRK5-NT reduced both wall thickness and ventricular mass by modulating NFAT and GATA-4 activity. To further verify in vitro the contribution of calmodulin in linking GRK5-NT to the NFAT/GATA-4 pathway, we examined the effects of a mutant of GRK5 (GRK5-NTPB), which is not able to bind calmodulin. When compared to GRK5-NT, GRK5-NTPB did not modify PE-induced NFAT and GATA-4 activation. In conclusion, this study identifies a double effect of GRK5-NT in the inhibition of LVH that is based on the regulation of multiple transcription factors through means of different mechanisms and proposes the amino-terminal sequence of GRK5 as a useful prototype for therapeutic purposes.

Collaboration


Dive into the Angela Serena Maione's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maddalena Illario

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Maria Rosaria Rusciano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Sorriento

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Maria Soprano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pietro Formisano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge