Maria Rosaria Rusciano
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Rosaria Rusciano.
Rejuvenation Research | 2011
Alberto Malovini; Maddalena Illario; Guido Iaccarino; Francesco Villa; Anna Ferrario; Roberta Roncarati; Chiara Viviani Anselmi; Valeria Novelli; Erminia Cipolletta; Elena Leggiero; Alessandro Orro; Maria Rosaria Rusciano; Luciano Milanesi; Antonella Maione; Gianluigi Condorelli; Riccardo Bellazzi; Annibale Alessandro Puca
Long-living individuals (LLIs) are used to study exceptional longevity. A number of genetic variants have been found associated in LLIs to date, but further identification of variants would improve knowledge on the mechanisms regulating the rate of aging. Therefore, we performed a genome-wide association study on 410 LLIs and 553 young control individuals with a 317K single-nucleotide polymorphism (SNP) chip to identify novel traits associated with aging. Among the top (p < 1 × 10(-4)) SNPs initially identified, we found rs10491334 (CAMKIV) (odds ratio [OR] = 0.55; 95% confidence interval [CI] 0.42-0.73; p = 2.88 × 10(-5)), a variant previously reported associated with diastolic blood pressure, associated also in a replication set of 116 LLIs and 160 controls (OR = 0.54; 95% CI 0.32-0.90; p = 9 × 10(-3)). Furthermore, in vitro analysis established that calcium/calmodulin-dependent protein kinase IV (CAMKIV) activates the survival proteins AKT, SIRT1, and FOXO3A, and we found that homozygous carriers of rs10491334 have a significant reduction in CAMKIV expression. This, together with the observed reduction in minor-allele carriers among centenarians, points to a detrimental role for the SNP. In conclusion, prolongevity genes are activated by CAMKIV, the levels of which are influenced by rs10491334, a SNP associated with human longevity.
Cell Cycle | 2009
Sara E. Monaco; Maddalena Illario; Maria Rosaria Rusciano; Giovanni Gragnaniello; Gaetano Di Spigna; Eleonora Leggiero; Lucio Pastore; Gianfranco Fenzi; Guido Rossi; Mario Vitale
Insulin effects are mediated by multiple integrated signals generated by the insulin receptor. Fibroblasts, as most of mammalian cells, are a target of insulin action and are important actors in the vascular pathogenesis of hyperinsulinemia. A role for calcium-calmodulin-dependent kinases (CaMK) in insulin signalling has been proposed but has been under investigated. We investigated the role of the CaMK isoform II in insulin signalling in human fibroblasts. A rapid and transient increase of intracellular calcium concentration was induced by insulin stimulation, followed by increase of CaMKII activity, via L type calcium channels. Concomitantly, insulin stimulation induced Raf-1 and ERK activation, followed by thymidine uptake. Inhibition of CaMKII abrogated the insulin-induced Raf-1 and ERK activation, resulting also in the inhibition of thymidine incorporation. These results demonstrate that in fibroblasts, insulin-activated CaMKII is necessary, together with Raf-1, for ERK activation and cell proliferation. This represents a novel mechanism in the control of insulin signals leading to fibroblast proliferation, as well as a putative site for pharmacological intervention.
PLOS ONE | 2015
Ersilia Cipolletta; Maria Rosaria Rusciano; Angela Serena Maione; Gaetano Santulli; Daniela Sorriento; Carmine Del Giudice; Michele Ciccarelli; Antonietta Franco; Catherine Crola; Pietro Campiglia; Marina Sala; Isabel Gomez-Monterrey; Nicola De Luca; Bruno Trimarco; Guido Iaccarino; Maddalena Illario
Aims Activation of Ca2+/Calmodulin protein kinase II (CaMKII) is an important step in signaling of cardiac hypertrophy. The molecular mechanisms by which CaMKII integrates with other pathways in the heart are incompletely understood. We hypothesize that CaMKII association with extracellular regulated kinase (ERK), promotes cardiac hypertrophy through ERK nuclear localization. Methods and Results In H9C2 cardiomyoblasts, the selective CaMKII peptide inhibitor AntCaNtide, its penetratin conjugated minimal inhibitory sequence analog tat-CN17β, and the MEK/ERK inhibitor UO126 all reduce phenylephrine (PE)-mediated ERK and CaMKII activation and their interaction. Moreover, AntCaNtide or tat-CN17β pretreatment prevented PE induced CaMKII and ERK nuclear accumulation in H9C2s and reduced the hypertrophy responses. To determine the role of CaMKII in cardiac hypertrophy in vivo, spontaneously hypertensive rats were subjected to intramyocardial injections of AntCaNtide or tat-CN17β. Left ventricular hypertrophy was evaluated weekly for 3 weeks by cardiac ultrasounds. We observed that the treatment with CaMKII inhibitors induced similar but significant reduction of cardiac size, left ventricular mass, and thickness of cardiac wall. The treatment with CaMKII inhibitors caused a significant reduction of CaMKII and ERK phosphorylation levels and their nuclear localization in the heart. Conclusion These results indicate that CaMKII and ERK interact to promote activation in hypertrophy; the inhibition of CaMKII-ERK interaction offers a novel therapeutic approach to limit cardiac hypertrophy.
Endocrine-related Cancer | 2010
Maria Rosaria Rusciano; Marcella Salzano; Sara Monaco; Maria Rosaria Sapio; Maddalena Illario; Valentina De Falco; Massimo Santoro; Pietro Campiglia; Lucio Pastore; Gianfranco Fenzi; Guido Rossi; Mario Vitale
RET/papillary thyroid carcinoma (PTC), TRK-T, or activating mutations of Ras and BRaf are frequent genetic alterations in PTC, all leading to the activation of the extracellular-regulated kinase (Erk) cascade. The aim of this study was to investigate the role of calmodulin-dependent kinase II (CaMKII) in the signal transduction leading to Erk activation in PTC cells. In normal thyroid cells, CaMKII and Erk were in the inactive form in the absence of stimulation. In primary PTC cultures and in PTC cell lines harboring the oncogenes RET/PTC-1 or BRaf(V600E), CaMKII was active also in the absence of any stimulation. Inhibition of calmodulin or phospholipase C (PLC) attenuated the level of CaMKII activation. Expression of recombinant RET/PTC-3, BRaf(V600E), or Ras(V12) induced CaMKII activation. Inhibition of CaMKII attenuated Erk activation and DNA synthesis in thyroid papillary carcinoma (TPC-1), a cell line harboring RET/PTC-1, suggesting that CaMKII is a component of the Erk signal cascade in this cell line. In conclusion, PTCs contain an active PLC/Ca(2+)/calmodulin-dependent signal inducing constitutive activation of CaMKII. This kinase is activated by BRaf(V600E), oncogenic Ras, and by RET/PTC. CaMKII participates to the activation of the Erk pathway by oncogenic Ras and RET/PTC and contributes to their signal output, thus modulating tumor cell proliferation.
Cell Cycle | 2012
Marcella Salzano; Maria Rosaria Rusciano; Eleonora Russo; Maurizio Bifulco; Loredana Postiglione; Mario Vitale
The calcium/calmodulin-dependent kinase II (CaMKII) participates with Ras to Raf-1 activation, and it is necessary for activation of the extracellular signal-regulated kinase (ERK) by different factors in epithelial and mesenchimal cells. Raf-1 activation is a complex multistep process, and its maximal activation is achieved by phosphorylation at Y341 by Src and at S338 by other kinase/s. Although early data proposed the involvement of p21-activated kinase 3 (Pak3), the kinase phosphorylating S338 remains to be definitively identified. In this study, we verified the hypothesis that CaMKII phosphorylates Raf-1 at Ser338. To do so, we determined the role of CaMKII in Raf-1 and ERK activation by oncogenic Ras and other factors. Serum, fibronectin, SrcY527 and RasV12 activated CaMKII and ERK, at different extents. The inhibition of CaMKII attenuated Raf-1 and ERK activation by all these factors. CaMKII was also necessary for the phosphorylation of Raf-1 at S338 by serum, fibronectin and Ras. Conversely, inhibition of Pak3 activation by blocking phosphatidylinositol 3-kinase was ineffective. The direct phosphorylation of S338 Raf-1 by CaMKII was demonstrated in vitro by interaction of purified kinases. These results demonstrate that Ras activates CaMKII, which, in turn, phosphorylates Raf-1 at S338 and participates in ERK activation upon different stimuli.
European Journal of Medicinal Chemistry | 2013
Isabel Gomez-Monterrey; Marina Sala; Maria Rosaria Rusciano; Sara Monaco; Angela Serena Maione; Guido Iaccarino; Paolo Tortorella; Anna Maria D'Ursi; Mario Scrima; Alfonso Carotenuto; Giuseppe De Rosa; Alessia Bertamino; Ermelinda Vernieri; Paolo Grieco; Ettore Novellino; Maddalena Illario; Pietro Campiglia
Analogs of potent CaMKinase II inhibitor, CaM-KNtide, were prepared to explore new structural requirements for the inhibitory activity. The full potency of CaMKII inhibition by CaM-KIINα is contained within a minimal region of 19 amino acids. Here, analysis of the homologous CaM-KIINβ showed that a 17 mer peptide (CN17β) was the shortest sequence that still retained useful inhibitory potency. Ala substitution of almost any residue of CN17β dramatically reduced potency, except for substitution of P3, R14, and V16. Fusion with the tat sequence generated the cell-penetrating inhibitor version tat-5. This tat-5 fusion peptide maintained selectivity for CaMKII over CaMKI and CaMKIV, and appeared to slightly further enhance potency (IC50 ∼30 nM). Within a breast cancer cell line and in primary human fibroblasts, tat-5 inhibited the Erk signaling pathway and proliferation without any measurable cytotoxicity. Structural analysis of CN17β by CD and NMR indicated an α-helix conformation in the Leu6-Arg11 segment well overlapping with the crystal structure of 21-residue segment of CaM-KNtide bound to the kinase domain of CaMKII.
Cellular Signalling | 2015
Sara Monaco; Maria Rosaria Rusciano; Angela Serena Maione; Maria Soprano; Rohini Gomathinayagam; Lance R. Todd; Pietro Campiglia; Salvatore Salzano; Lucio Pastore; Eleonora Leggiero; Donald C. Wilkerson; M Rocco; Guido Iaccarino; Uma Sankar; Maddalena Illario
CaMKs link transient increases in intracellular Ca(2+) with biological processes. In myeloid leukemia cells, CaMKII, activated by the bcr-abl oncogene, promotes cell proliferation. Inhibition of CaMKII activity restricts cell proliferation, and correlates with growth arrest and differentiation. The mechanism by which the inhibition of CaMKII results in growth arrest and differentiation in myeloid leukemia cells is still unknown. We report that inhibition of CaMKII activity results in an upregulation of CaMKIV mRNA and protein in leukemia cell lines. Conversely, expression of CaMKIV inhibits autophosphorylation and activation of CaMKII, and elicits G0/G1cell cycle arrest,impairing cell proliferation. Furthermore, U937 cells expressing CaMKIV show elevated levels of Cdk inhibitors p27(kip1) and p16(ink4a) and reduced levels of cyclins A, B1 and D1. These findings were also confirmed in the K562 leukemic cell line. The relationship between CaMKII and CaMKIV is also observed in primary acute myeloid leukemia (AML) cells, and it correlates with their immunophenotypic profile. Indeed, immature MO/M1 AML showed increased CaMKIV expression and decreased pCaMKII, whereas highly differentiated M4/M5 AML showed decreased CaMKIV expression and increased pCaMKII levels. Our data reveal a novel cross-talk between CaMKII and CaMKIV and suggest that CaMKII suppresses the expression of CaMKIV to promote leukemia cell proliferation.
Cellular Signalling | 2014
Michele Ciccarelli; Maria Rosaria Rusciano; Daniela Sorriento; Maria Felicia Basilicata; Gaetano Santulli; Pietro Campiglia; Alessia Bertamino; Nicola De Luca; Bruno Trimarco; Guido Iaccarino; Maddalena Illario
CaMKs are a widely distributed family of kinases with multiple and often cell specific effects on intracellular signal transduction pathway. In endothelial cells, it has been recognized a role for CamKII in several pathways such as eNOS activation and nitric oxide production. It is not clear though, whether CaMKII interfere with other endothelial cell functions such as ERK activation and cell proliferation. We explored this issue in primary cultured rat endothelial cells and we evaluated the effect on endothelial cell proliferation and DNA synthesis. CaMKII inhibition through Cantide, conducted into the cell through Antoennapedia (ANT-CN), showed positive effects on proliferation and H(3)-thimdine incorporation similar to insulin stimulation. Accordingly, both CaMKII pharmacological inhibition and silencing through shRNA produced activation of the p44/42 MAPK. These observations leaded to the hypothesis that CamKII could regulate p44/p42 by interfering with specific ERK phosphatases. Indeed, we found that CaMKII interacts and protect the dual specific phosphatase MKP-1 from proteasome mediated degradation while this complex is disrupted by CaMKII inhibitors. This study reveals that CaMKII, besides phosphorylation through the known ras-raf-mek pathway, can regulate also dephosphorylation of p44/p42 by modulation of MKP-1 level. This novel finding opens to a novel scenario in regulation of endothelial cell functions.
Atherosclerosis | 2017
Angela Serena Maione; Ersilia Cipolletta; Daniela Sorriento; Francesco Borriello; Maria Soprano; Maria Rosaria Rusciano; Vittoria D'Esposito; Abdul Karim Markabaoui; Giovanni Domenico De Palma; Giovanni Martino; Lucio Maresca; Giuseppe Nobile; Pietro Campiglia; Pietro Formisano; Michele Ciccarelli; Gianni Marone; Bruno Trimarco; Guido Iaccarino; Maddalena Illario
BACKGROUND AND AIMS Atherosclerosis is a degenerative process of the arterial wall implicating activation of macrophages and proliferation of vascular smooth muscle cells. Calcium-calmodulin dependent kinase type II (CaMKII) in vascular smooth muscle cells (VSMCs) regulates proliferation, while in macrophages, this kinase governs diapedesis, infiltration and release of extracellular matrix enzymes. We aimed at understanding the possible role of CaMKII in atherosclerosis plaques to regulate plaque evolution towards stability or instability. METHODS Clinically defined stable and unstable plaques obtained from patients undergoing carotid end arteriectomy were processed for evaluation of CaMKs protein expression, activity and localization. RESULTS The larger content of CaMKII was found in CD14+myeloid cells that were more abundant in unstable rather than stable plaques. To test the biological effect of activated CD14+myeloid cells, VSMCs were exposed to the conditioned medium (CM) of macrophages extracted from carotid plaques. CM induced attenuation of CaMKs expression and activity in VSMCs, leading to the reduction of VSMCs proliferation. This appears to be due to the CaMKII dependent release of cytokines. CONCLUSIONS These results indicate a pivotal role of CaMKs in atherosclerosis by regulating activated myeloid cells on VSMCs activity. CaMKII could represent a possible target for therapeutic strategies based on macrophages specific inhibition for the stabilization of arteriosclerotic lesions.
Current Diabetes Reviews | 2015
Maria Soprano; Maria Rosaria Rusciano; Michele Ciccarelli; Angela Serena Maione; Pietro Formisano; Maddalena Illario
Aging is one of the most important societal challenges that western societies face, as a result of longer life expectancy and reduced natality rates. Aging is a success story of our health and social systems, but raises sustainability issues that are linked to the increased need for services of older adults, due to the reduction of their independence and to the co-existence of multiple chronic diseases. The metabolic syndrome can be considered an age-related disease, since its prevalence increases with age. Current demographic trends in the population highlight aging-related dysfunctions that contribute to the onset of several metabolic diseases, and the need for innovative, effective and sustainable approaches. This review describes the correlation between the metabolic syndrome and aging, and the underlying common molecular mechanisms, focusing on calcium signaling and its crosstalks.