Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela Tam is active.

Publication


Featured researches published by Angela Tam.


Nature | 2012

The clonal and mutational evolution spectrum of primary triple-negative breast cancers.

Sohrab P. Shah; Andrew Roth; Rodrigo Goya; Arusha Oloumi; Gavin Ha; Yongjun Zhao; Gulisa Turashvili; Jiarui Ding; Kane Tse; Gholamreza Haffari; Ali Bashashati; Leah M Prentice; Jaswinder Khattra; Angela Burleigh; Damian Yap; Virginie Bernard; Andrew McPherson; Karey Shumansky; Anamaria Crisan; Ryan Giuliany; Alireza Heravi-Moussavi; Jamie Rosner; Daniel Lai; Inanc Birol; Richard Varhol; Angela Tam; Noreen Dhalla; Thomas Zeng; Kevin Ma; Simon K. Chan

Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time—to our knowledge—in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.


Nature Genetics | 2010

Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin

Ryan D. Morin; Nathalie A. Johnson; Tesa Severson; Andrew J. Mungall; Jianghong An; Rodrigo Goya; Jessica E. Paul; Merrill Boyle; Bruce Woolcock; Florian Kuchenbauer; Damian Yap; R. Keith Humphries; Obi L. Griffith; Sohrab P. Shah; Henry Zhu; Michelle Kimbara; Pavel Shashkin; Jean F Charlot; Marianna Tcherpakov; Richard Corbett; Angela Tam; Richard Varhol; Duane E. Smailus; Michelle Moksa; Yongjun Zhao; Allen Delaney; Hong Qian; Inanc Birol; Jacqueline E. Schein; Richard A. Moore

Follicular lymphoma (FL) and the GCB subtype of diffuse large B-cell lymphoma (DLBCL) derive from germinal center B cells. Targeted resequencing studies have revealed mutations in various genes encoding proteins in the NF-κB pathway that contribute to the activated B-cell (ABC) DLBCL subtype, but thus far few GCB-specific mutations have been identified. Here we report recurrent somatic mutations affecting the polycomb-group oncogene EZH2, which encodes a histone methyltransferase responsible for trimethylating Lys27 of histone H3 (H3K27). After the recent discovery of mutations in KDM6A (UTX), which encodes the histone H3K27me3 demethylase UTX, in several cancer types, EZH2 is the second histone methyltransferase gene found to be mutated in cancer. These mutations, which result in the replacement of a single tyrosine in the SET domain of the EZH2 protein (Tyr641), occur in 21.7% of GCB DLBCLs and 7.2% of FLs and are absent from ABC DLBCLs. Our data are consistent with the notion that EZH2 proteins with mutant Tyr641 have reduced enzymatic activity in vitro.


Nature | 2011

Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma

Ryan D. Morin; Maria Mendez-Lago; Andrew J. Mungall; Rodrigo Goya; Karen Mungall; Richard Corbett; Nathalie A. Johnson; Tesa Severson; Readman Chiu; Matthew A. Field; Shaun D. Jackman; Martin Krzywinski; David W. Scott; Diane L. Trinh; Jessica Tamura-Wells; Sa Li; Marlo Firme; Sanja Rogic; Malachi Griffith; Susanna Chan; Oleksandr Yakovenko; Irmtraud M. Meyer; Eric Zhao; Duane E. Smailus; Michelle Moksa; Lisa M. Rimsza; Angela Brooks-Wilson; John J. Spinelli; Susana Ben-Neriah; Barbara Meissner

Follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) are the two most common non-Hodgkin lymphomas (NHLs). Here we sequenced tumour and matched normal DNA from 13 DLBCL cases and one FL case to identify genes with mutations in B-cell NHL. We analysed RNA-seq data from these and another 113 NHLs to identify genes with candidate mutations, and then re-sequenced tumour and matched normal DNA from these cases to confirm 109 genes with multiple somatic mutations. Genes with roles in histone modification were frequent targets of somatic mutation. For example, 32% of DLBCL and 89% of FL cases had somatic mutations in MLL2, which encodes a histone methyltransferase, and 11.4% and 13.4% of DLBCL and FL cases, respectively, had mutations in MEF2B, a calcium-regulated gene that cooperates with CREBBP and EP300 in acetylating histones. Our analysis suggests a previously unappreciated disruption of chromatin biology in lymphomagenesis.


The New England Journal of Medicine | 2010

ARID1A Mutations in Endometriosis-Associated Ovarian Carcinomas

Kimberly C. Wiegand; Sohrab P. Shah; Osama M. Al-Agha; Yongjun Zhao; Kane Tse; Thomas Zeng; Janine Senz; Melissa K. McConechy; Michael S. Anglesio; Steve E. Kalloger; Winnie Yang; Alireza Heravi-Moussavi; Ryan Giuliany; Christine Chow; John Fee; Abdalnasser Zayed; Leah M Prentice; Nataliya Melnyk; Gulisa Turashvili; Allen Delaney; Jason Madore; Stephen Yip; Andrew McPherson; Gavin Ha; Lynda Bell; Sian Fereday; Angela Tam; Laura Galletta; Patricia N. Tonin; Diane Provencher

BACKGROUND Ovarian clear-cell and endometrioid carcinomas may arise from endometriosis, but the molecular events involved in this transformation have not been described. METHODS We sequenced the whole transcriptomes of 18 ovarian clear-cell carcinomas and 1 ovarian clear-cell carcinoma cell line and found somatic mutations in ARID1A (the AT-rich interactive domain 1A [SWI-like] gene) in 6 of the samples. ARID1A encodes BAF250a, a key component of the SWI–SNF chromatin remodeling complex. We sequenced ARID1A in an additional 210 ovarian carcinomas and a second ovarian clear-cell carcinoma cell line and measured BAF250a expression by means of immunohistochemical analysis in an additional 455 ovarian carcinomas. RESULTS ARID1A mutations were seen in 55 of 119 ovarian clear-cell carcinomas (46%), 10 of 33 endometrioid carcinomas (30%), and none of the 76 high-grade serous ovarian carcinomas. Seventeen carcinomas had two somatic mutations each. Loss of the BAF250a protein correlated strongly with the ovarian clear-cell carcinoma and endometrioid carcinoma subtypes and the presence of ARID1A mutations. In two patients, ARID1A mutations and loss of BAF250a expression were evident in the tumor and contiguous atypical endometriosis but not in distant endometriotic lesions. CONCLUSIONS These data implicate ARID1A as a tumor-suppressor gene frequently disrupted in ovarian clear-cell and endometrioid carcinomas. Since ARID1A mutation and loss of BAF250a can be seen in the preneoplastic lesions, we speculate that this is an early event in the transformation of endometriosis into cancer. (Funded by the British Columbia Cancer Foundation and the Vancouver General Hospital–University of British Columbia Hospital Foundation.).


Nature Methods | 2010

De novo assembly and analysis of RNA-seq data

Gordon Robertson; Jacqueline E. Schein; Readman Chiu; Richard Corbett; Matthew A. Field; Shaun D. Jackman; Karen Mungall; Sam Lee; Hisanaga Mark Okada; Jenny Q. Qian; Malachi Griffith; Anthony Raymond; Nina Thiessen; Timothee Cezard; Yaron S N Butterfield; Richard Newsome; Simon K. Chan; Rong She; Richard Varhol; Baljit Kamoh; Anna-Liisa Prabhu; Angela Tam; Yongjun Zhao; Richard A. Moore; Martin Hirst; Marco A. Marra; Steven J.M. Jones; Pamela A. Hoodless; Inanc Birol

We describe Trans-ABySS, a de novo short-read transcriptome assembly and analysis pipeline that addresses variation in local read densities by assembling read substrings with varying stringencies and then merging the resulting contigs before analysis. Analyzing 7.4 gigabases of 50-base-pair paired-end Illumina reads from an adult mouse liver poly(A) RNA library, we identified known, new and alternative structures in expressed transcripts, and achieved high sensitivity and specificity relative to reference-based assembly methods.


Nature Genetics | 2013

The genetic landscape of high-risk neuroblastoma

Trevor J. Pugh; Olena Morozova; Edward F. Attiyeh; Shahab Asgharzadeh; Jun S. Wei; Daniel Auclair; Scott L. Carter; Kristian Cibulskis; Megan Hanna; Adam Kiezun; Jaegil Kim; Michael S. Lawrence; Lee Lichenstein; Aaron McKenna; Chandra Sekhar Pedamallu; Alex H. Ramos; Erica Shefler; Andrey Sivachenko; Carrie Sougnez; Chip Stewart; Adrian Ally; Inanc Birol; Readman Chiu; Richard Corbett; Martin Hirst; Shaun D. Jackman; Baljit Kamoh; Alireza Hadj Khodabakshi; Martin Krzywinski; Allan Lo

Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 affected individuals (cases) using a combination of whole-exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per Mb (0.48 nonsilent) and notably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, and an additional 7.1% had focal deletions), MYCN (1.7%, causing a recurrent p.Pro44Leu alteration) and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1 and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies that rely on frequently altered oncogenic drivers.


Nature | 2013

Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells

Kathryn Blaschke; Kevin T. Ebata; Mohammad M. Karimi; Jorge A. Zepeda-Martínez; Preeti Goyal; Sahasransu Mahapatra; Angela Tam; Martin Hirst; Anjana Rao; Matthew C. Lorincz; Miguel Ramalho-Santos

DNA methylation is a heritable epigenetic modification involved in gene silencing, imprinting, and the suppression of retrotransposons. Global DNA demethylation occurs in the early embryo and the germ line, and may be mediated by Tet (ten eleven translocation) enzymes, which convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Tet enzymes have been studied extensively in mouse embryonic stem (ES) cells, which are generally cultured in the absence of vitamin C, a potential cofactor for Fe(ii) 2-oxoglutarate dioxygenase enzymes such as Tet enzymes. Here we report that addition of vitamin C to mouse ES cells promotes Tet activity, leading to a rapid and global increase in 5hmC. This is followed by DNA demethylation of many gene promoters and upregulation of demethylated germline genes. Tet1 binding is enriched near the transcription start site of genes affected by vitamin C treatment. Importantly, vitamin C, but not other antioxidants, enhances the activity of recombinant Tet1 in a biochemical assay, and the vitamin-C-induced changes in 5hmC and 5mC are entirely suppressed in Tet1 and Tet2 double knockout ES cells. Vitamin C has a stronger effect on regions that gain methylation in cultured ES cells compared to blastocysts, and in vivo are methylated only after implantation. In contrast, imprinted regions and intracisternal A particle retroelements, which are resistant to demethylation in the early embryo, are resistant to vitamin-C-induced DNA demethylation. Collectively, the results of this study establish vitamin C as a direct regulator of Tet activity and DNA methylation fidelity in ES cells.DNA methylation is a heritable epigenetic modification involved in gene silencing, imprinting, and the suppression of retrotransposons1. Global DNA demethylation occurs in the early embryo and the germline2,3 and may be mediated by Tet (ten-eleven-translocation) enzymes4–6, which convert 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC)7. Tet enzymes have been extensively studied in mouse embryonic stem cells (ESCs)8–12, which are generally cultured in the absence of Vitamin C (VitC), a potential co-factor for Fe(II) 2-oxoglutarate dioxygenase enzymes like Tets. Here we report that addition of VitC to ESCs promotes Tet activity leading to a rapid and global increase in hmC. This is followed by DNA demethylation of numerous gene promoters and up-regulation of demethylated germline genes. Tet1 binding is enriched near the transcription start site (TSS) of genes affected by VitC treatment. Importantly, VitC, but not other antioxidants, enhances the activity of recombinant Tet1 in a biochemical assay and the VitC-induced changes in hmC and mC are entirely suppressed in Tet1/2 double knockout (Tet DKO) ESCs. VitC has the strongest effects on regions that gain methylation in cultured ESCs compared to blastocysts and in vivo are methylated only after implantation. In contrast, imprinted regions and intracisternal A-particle (IAP) retroelements, which are resistant to demethylation in the early embryo2,13, are resistant to VitC-induced DNA demethylation. Collectively, this study establishes VitC as a direct regulator of Tet activity and DNA methylation fidelity in ESCs.


Genome Research | 2008

Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding

A. Gordon Robertson; Mikhail Bilenky; Angela Tam; Yongjun Zhao; Thomas Zeng; Nina Thiessen; Timothee Cezard; Anthony P. Fejes; Elizabeth D. Wederell; Rebecca Cullum; Ghia Euskirchen; Martin Krzywinski; Inanc Birol; Michael Snyder; Pamela A. Hoodless; Martin Hirst; Marco A. Marra; Steven J.M. Jones

We characterized the relationship of H3K4me1 and H3K4me3 at distal and proximal regulatory elements by comparing ChIP-seq profiles for these histone modifications and for two functionally different transcription factors: STAT1 in the immortalized HeLa S3 cell line, with and without interferon-gamma (IFNG) stimulation; and FOXA2 in mouse adult liver tissue. In unstimulated and stimulated HeLa cells, respectively, we determined approximately 270,000 and approximately 301,000 H3K4me1-enriched regions, and approximately 54,500 and approximately 76,100 H3K4me3-enriched regions. In mouse adult liver, we determined approximately 227,000 and approximately 34,800 H3K4me1 and H3K4me3 regions. Seventy-five percent of the approximately 70,300 STAT1 binding sites in stimulated HeLa cells and 87% of the approximately 11,000 FOXA2 sites in mouse liver were distal to known gene TSS; in both cell types, approximately 83% of these distal sites were associated with at least one of the two histone modifications, and H3K4me1 was associated with over 96% of marked distal sites. After filtering against predicted transcription start sites, 50% of approximately 26,800 marked distal IFNG-stimulated STAT1 binding sites, but 95% of approximately 5800 marked distal FOXA2 sites, were associated with H3K4me1 only. Results for HeLa cells generated additional insights into transcriptional regulation involving STAT1. STAT1 binding was associated with 25% of all H3K4me1 regions in stimulated HeLa cells, suggesting that a single transcription factor can interact with an unexpectedly large fraction of regulatory regions. Strikingly, for a large majority of the locations of stimulated STAT1 binding, the dominant H3K4me1/me3 combinations were established before activation, suggesting mechanisms independent of IFNG stimulation and high-affinity STAT1 binding.


Genome Biology | 2010

Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors.

Steven J.M. Jones; Janessa Laskin; Yvonne Y. Li; Obi L. Griffith; Jianghong An; Mikhail Bilenky; Yaron S N Butterfield; Timothee Cezard; Eric Chuah; Richard Corbett; Anthony P. Fejes; Malachi Griffith; John Yee; Montgomery Martin; Michael Mayo; Nataliya Melnyk; Ryan D. Morin; Trevor J. Pugh; Tesa Severson; Sohrab P. Shah; Margaret Sutcliffe; Angela Tam; Jefferson Terry; Nina Thiessen; Thomas A. Thomson; Richard Varhol; Thomas Zeng; Yongjun Zhao; Richard A. Moore; David Huntsman

BackgroundAdenocarcinomas of the tongue are rare and represent the minority (20 to 25%) of salivary gland tumors affecting the tongue. We investigated the utility of massively parallel sequencing to characterize an adenocarcinoma of the tongue, before and after treatment.ResultsIn the pre-treatment tumor we identified 7,629 genes within regions of copy number gain. There were 1,078 genes that exhibited increased expression relative to the blood and unrelated tumors and four genes contained somatic protein-coding mutations. Our analysis suggested the tumor cells were driven by the RET oncogene. Genes whose protein products are targeted by the RET inhibitors sunitinib and sorafenib correlated with being amplified and or highly expressed. Consistent with our observations, administration of sunitinib was associated with stable disease lasting 4 months, after which the lung lesions began to grow. Administration of sorafenib and sulindac provided disease stabilization for an additional 3 months after which the cancer progressed and new lesions appeared. A recurring metastasis possessed 7,288 genes within copy number amplicons, 385 genes exhibiting increased expression relative to other tumors and 9 new somatic protein coding mutations. The observed mutations and amplifications were consistent with therapeutic resistance arising through activation of the MAPK and AKT pathways.ConclusionsWe conclude that complete genomic characterization of a rare tumor has the potential to aid in clinical decision making and identifying therapeutic approaches where no established treatment protocols exist. These results also provide direct in vivo genomic evidence for mutational evolution within a tumor under drug selection and potential mechanisms of drug resistance accrual.


Nature Genetics | 2013

DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape

Mingchao Xie; Chibo Hong; Bo Zhang; Rebecca F. Lowdon; Xiaoyun Xing; Daofeng Li; Xin Zhou; Hyung Joo Lee; Cecile L. Maire; Keith L. Ligon; Philippe Gascard; Mahvash Sigaroudinia; Thea D. Tlsty; Theresa A. Kadlecek; Arthur Weiss; Henriette O'Geen; Peggy J. Farnham; Pamela A. F. Madden; Andrew J. Mungall; Angela Tam; Baljit Kamoh; Stephanie Cho; Richard A. Moore; Martin Hirst; Marco A. Marra; Joseph F. Costello; Ting Wang

Transposable element (TE)-derived sequences comprise half of the human genome and DNA methylome and are presumed to be densely methylated and inactive. Examination of genome-wide DNA methylation status within 928 TE subfamilies in human embryonic and adult tissues identified unexpected tissue-specific and subfamily-specific hypomethylation signatures. Genes proximal to tissue-specific hypomethylated TE sequences were enriched for functions important for the relevant tissue type, and their expression correlated strongly with hypomethylation within the TEs. When hypomethylated, these TE sequences gained tissue-specific enhancer marks, including monomethylation of histone H3 at lysine 4 (H3K4me1) and occupancy by p300, and a majority exhibited enhancer activity in reporter gene assays. Many such TEs also harbored binding sites for transcription factors that are important for tissue-specific functions and showed evidence of evolutionary selection. These data suggest that sequences derived from TEs may be responsible for wiring tissue type–specific regulatory networks and may have acquired tissue-specific epigenetic regulation.

Collaboration


Dive into the Angela Tam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Hirst

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Marco A. Marra

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Steven J.M. Jones

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Inanc Birol

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Varhol

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge