Angela V. Toms
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angela V. Toms.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Cai-Hong Yun; Kristen E. Mengwasser; Angela V. Toms; Michele S. Woo; Heidi Greulich; Kwok-Kin Wong; Matthew Meyerson; Michael J. Eck
Lung cancers caused by activating mutations in the epidermal growth factor receptor (EGFR) are initially responsive to small molecule tyrosine kinase inhibitors (TKIs), but the efficacy of these agents is often limited because of the emergence of drug resistance conferred by a second mutation, T790M. Threonine 790 is the “gatekeeper” residue, an important determinant of inhibitor specificity in the ATP binding pocket. The T790M mutation has been thought to cause resistance by sterically blocking binding of TKIs such as gefitinib and erlotinib, but this explanation is difficult to reconcile with the fact that it remains sensitive to structurally similar irreversible inhibitors. Here, we show by using a direct binding assay that T790M mutants retain low-nanomolar affinity for gefitinib. Furthermore, we show that the T790M mutation activates WT EGFR and that introduction of the T790M mutation increases the ATP affinity of the oncogenic L858R mutant by more than an order of magnitude. The increased ATP affinity is the primary mechanism by which the T790M mutation confers drug resistance. Crystallographic analysis of the T790M mutant shows how it can adapt to accommodate tight binding of diverse inhibitors, including the irreversible inhibitor HKI-272, and also suggests a structural mechanism for catalytic activation. We conclude that the T790M mutation is a “generic” resistance mutation that will reduce the potency of any ATP-competitive kinase inhibitor and that irreversible inhibitors overcome this resistance simply through covalent binding, not as a result of an alternative binding mode.
Journal of Experimental Medicine | 2012
Oliver Weigert; Andrew A. Lane; Liat Bird; Nadja Kopp; Bjoern Chapuy; Diederik van Bodegom; Angela V. Toms; Sachie Marubayashi; Amanda L. Christie; Michael R. McKeown; Ronald M. Paranal; James E. Bradner; Akinori Yoda; Christoph Gaul; Eric Vangrevelinghe; Vincent Romanet; Masato Murakami; Ralph Tiedt; Nicolas Ebel; Emeline Evrot; Alain De Pover; Catherine H. Regnier; Dirk Erdmann; Francesco Hofmann; Michael J. Eck; Stephen E. Sallan; Ross L. Levine; Andrew L. Kung; Fabienne Baffert; Thomas Radimerski
Hsp90 inhibition in B cell acute lymphoblastic leukemia overcomes resistance to JAK2 inhibitors.
Cell Reports | 2013
Daqi Tu; Zehua Zhu; Alicia Y. Zhou; Cai-Hong Yun; Kyung Eun Lee; Angela V. Toms; Yiqun Li; Gavin P. Dunn; Edmond M. Chan; Tran C. Thai; Shenghong Yang; Scott B. Ficarro; Jarrod A. Marto; Hyesung Jeon; William C. Hahn; David A. Barbie; Michael J. Eck
Upon stimulation by pathogen-associated inflammatory signals, TANK-binding kinase 1 (TBK1) induces type I interferon expression and modulates nuclear factor κB (NF-κB) signaling. Here, we describe the 2.4 Å-resolution crystal structure of nearly full-length TBK1 in complex with specific inhibitors. The structure reveals a dimeric assembly created by an extensive network of interactions among the kinase, ubiquitin-like, and scaffold/dimerization domains. An intact TBK1 dimer undergoes K63-linked polyubiquitination on lysines 30 and 401, and these modifications are required for TBK1 activity. The ubiquitination sites and dimer contacts are conserved in the close homolog inhibitor of κB kinase ε (IKKε) but not in IKKβ, a canonical IKK that assembles in an unrelated manner. The multidomain architecture of TBK1 provides a structural platform for integrating ubiquitination with kinase activation and IRF3 phosphorylation. The structure of TBK1 will facilitate studies of the atypical IKKs in normal and disease physiology and further the development of more specific inhibitors that may be useful as anticancer or anti-inflammatory agents.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Christina L. Vizcarra; Barry Kreutz; Avital A. Rodal; Angela V. Toms; Jun Lu; Wei Zheng; Margot E. Quinlan; Michael J. Eck
Evidence for cooperation between actin nucleators is growing. The WH2-containing nucleator Spire and the formin Cappuccino interact directly, and both are essential for assembly of an actin mesh during Drosophila oogenesis. Their interaction requires the kinase noncatalytic C-lobe domain (KIND) domain of Spire and the C-terminal tail of the formin. Here we describe the crystal structure of the KIND domain of human Spir1 alone and in complex with the tail of Fmn2, a mammalian ortholog of Cappuccino. The KIND domain is structurally similar to the C-lobe of protein kinases. The Fmn2 tail is coordinated in an acidic cleft at the base of the domain that appears to have evolved via deletion of a helix from the canonical kinase fold. Our functional analysis of Cappuccino reveals an unexpected requirement for its tail in actin assembly. In addition, we find that the KIND/tail interaction blocks nucleation by Cappuccino and promotes its displacement from filament barbed ends providing insight into possible modes of cooperation between Spire and Cappuccino.
Nature Structural & Molecular Biology | 2013
Angela V. Toms; Anagha Deshpande; Randall McNally; Youngjee Jeong; Julia M. Rogers; Chae Un Kim; Sol M. Gruner; Scott B. Ficarro; Jarrod A. Marto; Martin Sattler; James D. Griffin; Michael J. Eck
The V617F mutation in the Jak2 pseudokinase domain causes myeloproliferative neoplasms, and the equivalent mutation in Jak1 (V658F) is found in T-cell leukemias. Crystal structures of wild-type and V658F-mutant human Jak1 pseudokinase reveal a conformational switch that remodels a linker segment encoded by exon 12, which is also a site of mutations in Jak2. This switch is required for V617F-mediated Jak2 activation and possibly for physiologic Jak activation.
PLOS ONE | 2010
Azin Nezami; Florence Poy; Angela V. Toms; Wei Zheng; Michael J. Eck
Formin proteins direct the nucleation and assembly of linear actin filaments in a variety of cellular processes using their conserved formin homology 2 (FH2) domain. Diaphanous-related formins (DRFs) are effectors of Rho-family GTPases, and in the absence of Rho activation they are maintained in an inactive state by intramolecular interactions between their regulatory N-terminal region and a C-terminal segment referred to as the DAD domain. Although structures are available for the isolated DAD segment in complex with the interacting region in the N-terminus, it remains unclear how this leads to inhibition of actin assembly by the FH2 domain. Here we describe the crystal structure of the N-terminal regulatory region of formin mDia1 in complex with a C-terminal fragment containing both the FH2 and DAD domains. In the crystal structure and in solution, these fragments form a tetrameric complex composed of two interlocking N+C dimers. Formation of the tetramer is likely a consequence of the particular N-terminal construct employed, as we show that a nearly full-length mDia1 protein is dimeric, as are other autoinhibited N+C complexes containing longer N-terminal fragments. The structure provides the first view of the intact C-terminus of a DRF, revealing the relationship of the DAD to the FH2 domain. Delineation of alternative dimeric N+C interactions within the tetramer provides two general models for autoinhibition in intact formins. In both models, engagement of the DAD by the N-terminus is incompatible with actin filament formation on the FH2, and in one model the actin binding surfaces of the FH2 domain are directly blocked by the N-terminus.
PLOS ONE | 2011
Daqi Tu; Yiqun Li; Hyun Kyu Song; Angela V. Toms; Christopher J. Gould; Scott B. Ficarro; Jarrod A. Marto; Bruce L. Goode; Michael J. Eck
The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK), participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535–700). The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620) are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation.
ACS Chemical Biology | 2010
Yegor Smurnyy; Angela V. Toms; Gilles R.X. Hickson; Michael J. Eck; Ulrike S. Eggert
Aurora kinases are key regulators of cell division and important targets for cancer therapy. We report that Binucleine 2 is a highly isoform-specific inhibitor of Drosophila Aurora B kinase, and we identify a single residue within the kinase active site that confers specificity for Aurora B. Using Binucleine 2, we show that Aurora B kinase activity is not required during contractile ring ingression, providing insight into the mechanism of cytokinesis.
PLOS ONE | 2016
Randall McNally; Angela V. Toms; Michael J. Eck
Jak-family tyrosine kinases mediate signaling from diverse cytokine receptors. Binding of Jaks to their cognate receptors is mediated by their N-terminal region, which contains FERM and SH2 domains. Here we describe the crystal structure of the FERM-SH2 region of Jak2 at 3.0Å resolution. The structure reveals that these domains and their flanking linker segments interact intimately to form an integrated structural module. The Jak2 FERM-SH2 structure closely resembles that recently described for Tyk2, another member of the Jak family. While the overall architecture and interdomain orientations are preserved between Jak2 and Tyk2, we identify residues in the putative receptor-binding groove that differ between the two and may contribute to the specificity of receptor recognition. Analysis of Jak mutations that are reported to disrupt receptor binding reveals that they lie in the hydrophobic core of the FERM domain, and are thus expected to compromise the structural integrity of the FERM-SH2 unit. Similarly, analysis of mutations in Jak3 that are associated with severe combined immunodeficiency suggests that they compromise Jak3 function by destabilizing the FERM-SH2 structure.
Cell Reports | 2013
Daqi Tu; Zehua Zhu; Alicia Y. Zhou; Cai-Hong Yun; Kyung Eun Lee; Angela V. Toms; Yiqun Li; Gavin P. Dunn; Edmond M. Chan; Tran C. Thai; Shenghong Yang; Scott B. Ficarro; Jarrod A. Marto; Hyesung Jeon; William C. Hahn; David A. Barbie; Michael J. Eck