Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angelica Azcatl is active.

Publication


Featured researches published by Angelica Azcatl.


Science | 2015

Near-unity photoluminescence quantum yield in MoS2

Matin Amani; Der Hsien Lien; Daisuke Kiriya; Jun Xiao; Angelica Azcatl; Jiyoung Noh; Surabhi R. Madhvapathy; Rafik Addou; Santosh Kc; Madan Dubey; Kyeongjae Cho; Robert M. Wallace; Si-Chen Lee; Jr-Hau He; Joel W. Ager; Xiang Zhang; Eli Yablonovitch; Ali Javey

Brighter molybdenum layers The confined layers of molybdenum disulphide (MoS2) exhibit photoluminescence that is attractive for optolectronic applications. In practice, efficiencies are low, presumably because defects trap excitons before they can recombine and radiate light. Amani et al. show that treatment of monolayer MoS2 with a nonoxidizing organic superacid, bis(trifluoromethane) sulfonimide, increased luminescence efficiency in excess of 95%. The enhancement mechanism may be related to the shielding of defects, such as sulfur vacancies. Science, this issue p. 1065 Superacid treatment enhances the luminescence efficiency of monolayer molybdenum disulfide from 1% to >95%. Two-dimensional (2D) transition metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure of merit, the room-temperature photoluminescence quantum yield (QY), is extremely low. The prototypical 2D material molybdenum disulfide (MoS2) is reported to have a maximum QY of 0.6%, which indicates a considerable defect density. Here we report on an air-stable, solution-based chemical treatment by an organic superacid, which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by more than two orders of magnitude. The treatment eliminates defect-mediated nonradiative recombination, thus resulting in a final QY of more than 95%, with a longest-observed lifetime of 10.8 ± 0.6 nanoseconds. Our ability to obtain optoelectronic monolayers with near-perfect properties opens the door for the development of highly efficient light-emitting diodes, lasers, and solar cells based on 2D materials.


Nano Letters | 2014

MoS2 P-type Transistors and Diodes Enabled by High Work Function MoOx Contacts

Steven Chuang; Corsin Battaglia; Angelica Azcatl; Stephen McDonnell; Jeong Seuk Kang; Xingtian Yin; Mahmut Tosun; Rehan Kapadia; Hui Fang; Robert M. Wallace; Ali Javey

The development of low-resistance source/drain contacts to transition-metal dichalcogenides (TMDCs) is crucial for the realization of high-performance logic components. In particular, efficient hole contacts are required for the fabrication of p-type transistors with MoS2, a model TMDC. Previous studies have shown that the Fermi level of elemental metals is pinned close to the conduction band of MoS2, thus resulting in large Schottky barrier heights for holes with limited hole injection from the contacts. Here, we show that substoichiometric molybdenum trioxide (MoOx, x < 3), a high work function material, acts as an efficient hole injection layer to MoS2 and WSe2. In particular, we demonstrate MoS2 p-type field-effect transistors and diodes by using MoOx contacts. We also show drastic on-current improvement for p-type WSe2 FETs with MoOx contacts over devices made with Pd contacts, which is the prototypical metal used for hole injection. The work presents an important advance in contact engineering of TMDCs and will enable future exploration of their performance limits and intrinsic transport properties.


Nano Letters | 2014

Hole selective MoOx contact for silicon solar cells

Corsin Battaglia; Xingtian Yin; Maxwell Zheng; Ian D. Sharp; Teresa Chen; Stephen McDonnell; Angelica Azcatl; Carlo Carraro; Biwu Ma; Roya Maboudian; Robert M. Wallace; Ali Javey

Using an ultrathin (∼ 15 nm in thickness) molybdenum oxide (MoOx, x < 3) layer as a transparent hole selective contact to n-type silicon, we demonstrate a room-temperature processed oxide/silicon solar cell with a power conversion efficiency of 14.3%. While MoOx is commonly considered to be a semiconductor with a band gap of 3.3 eV, from X-ray photoelectron spectroscopy we show that MoOx may be considered to behave as a high workfunction metal with a low density of states at the Fermi level originating from the tail of an oxygen vacancy derived defect band located inside the band gap. Specifically, in the absence of carbon contamination, we measure a work function potential of ∼ 6.6 eV, which is significantly higher than that of all elemental metals. Our results on the archetypical semiconductor silicon demonstrate the use of nm-thick transition metal oxides as a simple and versatile pathway for dopant-free contacts to inorganic semiconductors. This work has important implications toward enabling a novel class of junctionless devices with applications for solar cells, light-emitting diodes, photodetectors, and transistors.


Nano Letters | 2015

Manganese Doping of Monolayer MoS2: The Substrate Is Critical

Kehao Zhang; Simin Feng; Junjie Wang; Angelica Azcatl; Ning Lu; Rafik Addou; Nan Wang; Chanjing Zhou; Jordan O. Lerach; Vincent Bojan; Moon J. Kim; Long-Qing Chen; Robert M. Wallace; Mauricio Terrones; J. Zhu; Joshua A. Robinson

Substitutional doping of transition metal dichalcogenides (TMDs) may provide routes to achieving tunable p-n junctions, bandgaps, chemical sensitivity, and magnetism in these materials. In this study, we demonstrate in situ doping of monolayer molybdenum disulfide (MoS2) with manganese (Mn) via vapor phase deposition techniques. Successful incorporation of Mn in MoS2 leads to modifications of the band structure as evidenced by photoluminescence and X-ray photoelectron spectroscopy, but this is heavily dependent on the choice of substrate. We show that inert substrates (i.e., graphene) permit the incorporation of several percent Mn in MoS2, while substrates with reactive surface terminations (i.e., SiO2 and sapphire) preclude Mn incorporation and merely lead to defective MoS2. The results presented here demonstrate that tailoring the substrate surface could be the most significant factor in substitutional doping of TMDs with non-TMD elements.


ACS Nano | 2013

HfO2 on MoS2 by Atomic Layer Deposition: Adsorption Mechanisms and Thickness Scalability

Stephen McDonnell; Barry Brennan; Angelica Azcatl; Ning Lu; Hong Dong; Creighton Buie; Jiyoung Kim; C. L. Hinkle; Moon J. Kim; Robert M. Wallace

We report our investigation of the atomic layer deposition (ALD) of HfO2 on the MoS2 surface. In contrast to previous reports of conformal growth on MoS2 flakes, we find that ALD on MoS2 bulk material is not uniform. No covalent bonding between the HfO2 and MoS2 is detected. We highlight that individual precursors do not permanently adsorb on the clean MoS2 surface but that organic and solvent residues can dramatically change ALD nucleation behavior. We then posit that prior reports of conformal ALD deposition on MoS2 flakes that had been exposed to such organics and solvents likely rely on contamination-mediated nucleation. These results highlight that surface functionalization will be required before controllable and low defect density high-κ/MoS2 interfaces will be realized. The band structure of the HfO2/MoS2 system is experimentally derived with valence and conduction band offsets found to be 2.67 and 2.09 eV, respectively.


ACS Nano | 2015

Highly Scalable, Atomically Thin WSe2 Grown via Metal–Organic Chemical Vapor Deposition

Sarah M. Eichfeld; Lorraine Hossain; Yu-Chuan Lin; Aleksander F. Piasecki; Benjamin Kupp; A. Glen Birdwell; Robert A. Burke; Ning Lu; Xin Peng; Jie Li; Angelica Azcatl; Stephen McDonnell; Robert M. Wallace; Moon J. Kim; Theresa S. Mayer; Joan M. Redwing; Joshua A. Robinson

Tungsten diselenide (WSe2) is a two-dimensional material that is of interest for next-generation electronic and optoelectronic devices due to its direct bandgap of 1.65 eV in the monolayer form and excellent transport properties. However, technologies based on this 2D material cannot be realized without a scalable synthesis process. Here, we demonstrate the first scalable synthesis of large-area, mono and few-layer WSe2 via metal-organic chemical vapor deposition using tungsten hexacarbonyl (W(CO)6) and dimethylselenium ((CH3)2Se). In addition to being intrinsically scalable, this technique allows for the precise control of the vapor-phase chemistry, which is unobtainable using more traditional oxide vaporization routes. We show that temperature, pressure, Se:W ratio, and substrate choice have a strong impact on the ensuing atomic layer structure, with optimized conditions yielding >8 μm size domains. Raman spectroscopy, atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM) confirm crystalline monoto-multilayer WSe2 is achievable. Finally, TEM and vertical current/voltage transport provide evidence that a pristine van der Waals gap exists in WSe2/graphene heterostructures.


ACS Nano | 2015

Impurities and Electronic Property Variations of Natural MoS2 Crystal Surfaces

Rafik Addou; Stephen McDonnell; Diego Barrera; Zaibing Guo; Angelica Azcatl; Jian Wang; Hui Zhu; C. L. Hinkle; M. A. Quevedo-Lopez; Husam N. Alshareef; Luigi Colombo; J. W. P. Hsu; Robert M. Wallace

Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication.


ACS Nano | 2014

Hole Contacts on Transition Metal Dichalcogenides: Interface Chemistry and Band Alignments

Stephen McDonnell; Angelica Azcatl; Rafik Addou; Cheng Gong; Corsin Battaglia; Steven Chuang; Kyeongjae Cho; Ali Javey; Robert M. Wallace

MoOx shows promising potential as an efficient hole injection layer for p-FETs based on transition metal dichalcogenides. A combination of experiment and theory is used to study the surface and interfacial chemistry, as well as the band alignments for MoOx/MoS2 and MoOx/WSe2 heterostructures, using photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory. A Mo(5+) rich interface region is identified and is proposed to explain the similar low hole Schottky barriers reported in a recent device study utilizing MoOx contacts on MoS2 and WSe2.


ACS Nano | 2014

Air Stable p-Doping of WSe2 by Covalent Functionalization

Peida Zhao; Daisuke Kiriya; Angelica Azcatl; Chenxi Zhang; Mahmut Tosun; Yi-Sheng Liu; Mark Hettick; Jeong Seuk Kang; Stephen McDonnell; Santosh Kc; Jinghua Guo; Kyeongjae Cho; Robert M. Wallace; Ali Javey

Covalent functionalization of transition metal dichalcogenides (TMDCs) is investigated for air-stable chemical doping. Specifically, p-doping of WSe(2) via NOx chemisorption at 150 °C is explored, with the hole concentration tuned by reaction time. Synchrotron based soft X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) depict the formation of various WSe(2-x-y)O(x)N(y) species both on the surface and interface between layers upon chemisorption reaction. Ab initio simulations corroborate our spectroscopy results in identifying the energetically favorable complexes, and predicting WSe(2):NO at the Se vacancy sites as the predominant dopant species. A maximum hole concentration of ∼ 10(19) cm(-3) is obtained from XPS and electrical measurements, which is found to be independent of WSe(2) thickness. This degenerate doping level facilitates 5 orders of magnitude reduction in contact resistance between Pd, a common p-type contact metal, and WSe(2). More generally, the work presents a platform for manipulating the electrical properties and band structure of TMDCs using covalent functionalization.


Applied Physics Letters | 2014

MoS2 functionalization for ultra-thin atomic layer deposited dielectrics

Angelica Azcatl; Stephen McDonnell; Santosh Kc; Xin Peng; Hong Dong; Xiaoye Qin; Rafik Addou; Greg Mordi; Ning Lu; Jiyoung Kim; Moon J. Kim; Kyeongjae Cho; Robert M. Wallace

The effect of room temperature ultraviolet-ozone (UV-O3) exposure of MoS2 on the uniformity of subsequent atomic layer deposition of Al2O3 is investigated. It is found that a UV-O3 pre-treatment removes adsorbed carbon contamination from the MoS2 surface and also functionalizes the MoS2 surface through the formation of a weak sulfur-oxygen bond without any evidence of molybdenum-sulfur bond disruption. This is supported by first principles density functional theory calculations which show that oxygen bonded to a surface sulfur atom while the sulfur is simultaneously back-bonded to three molybdenum atoms is a thermodynamically favorable configuration. The adsorbed oxygen increases the reactivity of MoS2 surface and provides nucleation sites for atomic layer deposition of Al2O3. The enhanced nucleation is found to be dependent on the thin film deposition temperature.

Collaboration


Dive into the Angelica Azcatl's collaboration.

Top Co-Authors

Avatar

Robert M. Wallace

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafik Addou

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Moon J. Kim

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Jiyoung Kim

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Xiaoye Qin

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Ning Lu

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

C. L. Hinkle

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Chadwin D. Young

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Kyeongjae Cho

University of Texas at Dallas

View shared research outputs
Researchain Logo
Decentralizing Knowledge