Angelo D’Alessandro
University of Colorado Denver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angelo D’Alessandro.
Circulation | 2016
Hong Liu; Yujin Zhang; Hongyu Wu; Angelo D’Alessandro; Gennady G. Yegutkin; Anren Song; Kaiqi Sun; Jessica Li; Ning-Yuan Cheng; Aji Huang; Yuan Edward Wen; Ting Ting Weng; Fayong Luo; Travis Nemkov; Hong Sun; Rodney E. Kellems; Harry Karmouty-Quintana; Kirk C. Hansen; Bihong Zhao; Andrew W. Subudhi; Sonja Jameson-Van Houten; Colleen G. Julian; Andrew T. Lovering; Holger K. Eltzschig; Michael R. Blackburn; Robert C. Roach; Yang Xia
Background: High altitude is a challenging condition caused by insufficient oxygen supply. Inability to adjust to hypoxia may lead to pulmonary edema, stroke, cardiovascular dysfunction, and even death. Thus, understanding the molecular basis of adaptation to high altitude may reveal novel therapeutics to counteract the detrimental consequences of hypoxia. Methods: Using high-throughput, unbiased metabolomic profiling, we report that the metabolic pathway responsible for production of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a negative allosteric regulator of hemoglobin-O2 binding affinity, was significantly induced in 21 healthy humans within 2 hours of arrival at 5260 m and further increased after 16 days at 5260 m. Results: This finding led us to discover that plasma adenosine concentrations and soluble CD73 activity rapidly increased at high altitude and were associated with elevated erythrocyte 2,3-BPG levels and O2 releasing capacity. Mouse genetic studies demonstrated that elevated CD73 contributed to hypoxia-induced adenosine accumulation and that elevated adenosine-mediated erythrocyte A2B adenosine receptor activation was beneficial by inducing 2,3-BPG production and triggering O2 release to prevent multiple tissue hypoxia, inflammation, and pulmonary vascular leakage. Mechanistically, we demonstrated that erythrocyte AMP-activated protein kinase was activated in humans at high altitude and that AMP-activated protein kinase is a key protein functioning downstream of the A2B adenosine receptor, phosphorylating and activating BPG mutase and thus inducing 2,3-BPG production and O2 release from erythrocytes. Significantly, preclinical studies demonstrated that activation of AMP-activated protein kinase enhanced BPG mutase activation, 2,3-BPG production, and O2 release capacity in CD73-deficient mice, in erythrocyte-specific A2B adenosine receptor knockouts, and in wild-type mice and in turn reduced tissue hypoxia and inflammation. Conclusions: Together, human and mouse studies reveal novel mechanisms of hypoxia adaptation and potential therapeutic approaches for counteracting hypoxia-induced tissue damage.
Amino Acids | 2015
Travis Nemkov; Angelo D’Alessandro; Kirk C. Hansen
Amino acid analysis is a powerful bioanalytical technique for many biomedical research endeavors, including cancer, emergency medicine, nutrition and neuroscience research. In the present study, we present a 3xa0min analytical method for underivatized amino acid analysis that employs ultraxa0high-performance liquid chromatography and high-resolution quadrupole orbitrap mass spectrometry. This method has demonstrated linearity (mM to nM range), reproducibility (intra-day <5xa0%, inter-day <20xa0%), sensitivity (low fmol) and selectivity. Here, we illustrate the rapidity and accuracy of the method through comparison with conventional liquid chromatography–mass spectrometry methods. We further demonstrate the robustness and sensitivity of this method on a diverse range of biological matrices. Using this method we were able to selectively discriminate murine pancreatic cancer cells with and without knocked down expression of hypoxia-inducible factor 1α; plasma, lymph and bronchioalveolar lavage fluid samples from control versus hemorrhaged rats; and muscle tissue samples harvested from rats subjected to both low-fat and high-fat diets. Furthermore, we were able to exploit the sensitivity of the method to detect and quantify the release of glutamate from sparsely isolated murine taste buds. Spiked in light or heavy standards (13C6-arginine, 13C6-lysine, 13C515N2-glutamine) or xenometabolitesxa0(5-fluorouracil) were used to determine coefficients of variation, confirm linearity of relative quantitation in four different matrices, and overcome matrix effects for absolute quantitation. The presented method enables high-throughput analysis of low-abundance samples requiring only one percent of the material extracted from 100,000 cells, 10xa0µl of biological fluid, or 2xa0mg of muscle tissue.
Circulation | 2016
Min Li; Suzette R. Riddle; Hui Zhang; Angelo D’Alessandro; Amanda Flockton; Natalie J. Serkova; Kirk C. Hansen; Radu Moldvan; B. Alexandre McKeon; Maria G. Frid; Sushil Kumar; Hong Li; Hongbing Liu; Angela Caánovas; Juan F. Medrano; Milton G. Thomas; Dijana Iloska; Lydie Plecitá-Hlavatá; Petr Ježek; Soni Savai Pullamsetti; Mehdi A. Fini; Karim C. El Kasmi; QingHong Zhang; Kurt R. Stenmark
Background: Changes in metabolism have been suggested to contribute to the aberrant phenotype of vascular wall cells, including fibroblasts, in pulmonary hypertension (PH). Here, we test the hypothesis that metabolic reprogramming to aerobic glycolysis is a critical adaptation of fibroblasts in the hypertensive vessel wall that drives proliferative and proinflammatory activation through a mechanism involving increased activity of the NADH-sensitive transcriptional corepressor C-terminal binding protein 1 (CtBP1). Methods: RNA sequencing, quantitative polymerase chain reaction,13C–nuclear magnetic resonance, fluorescence-lifetime imaging, mass spectrometry–based metabolomics, and tracing experiments with U-13C-glucose were used to assess glycolytic reprogramming and to measure the NADH/NAD+ ratio in bovine and human adventitial fibroblasts and mouse lung tissues. Immunohistochemistry was used to assess CtBP1 expression in the whole-lung tissues. CtBP1 siRNA and the pharmacological inhibitor 4-methylthio-2-oxobutyric acid (MTOB) were used to abrogate CtBP1 activity in cells and hypoxic mice. Results: We found that adventitial fibroblasts from calves with severe hypoxia-induced PH and humans with idiopathic pulmonary arterial hypertension (PH-Fibs) displayed aerobic glycolysis when cultured under normoxia, accompanied by increased free NADH and NADH/NAD+ ratios. Expression of the NADH sensor CtBP1 was increased in vivo and in vitro in fibroblasts within the pulmonary adventitia of humans with idiopathic pulmonary arterial hypertension and animals with PH and cultured PH-Fibs, respectively. Decreasing NADH pharmacologically with MTOB or genetically blocking CtBP1 with siRNA upregulated the cyclin-dependent genes (p15 and p21) and proapoptotic regulators (NOXA and PERP), attenuated proliferation, corrected the glycolytic reprogramming phenotype of PH-Fibs, and augmented transcription of the anti-inflammatory gene HMOX1. Chromatin immunoprecipitation analysis demonstrated that CtBP1 directly binds the HMOX1 promoter. Treatment of hypoxic mice with MTOB decreased glycolysis and expression of inflammatory genes, attenuated proliferation, and suppressed macrophage numbers and remodeling in the distal pulmonary vasculature. Conclusions: CtBP1 is a critical factor linking changes in cell metabolism to cell phenotype in hypoxic and other forms of PH and a therapeutic target.
Journal of Trauma-injury Infection and Critical Care | 2015
Erik D. Peltz; Angelo D’Alessandro; Ernest E. Moore; Theresa L. Chin; Christopher C. Silliman; Angela Sauaia; Kirk C. Hansen; Anirban Banerjee
BACKGROUND Severe trauma is associated with massive alterations in metabolism. Thus far, investigations have relied on traditional bioanalytic approaches including calorimetry or nuclear magnetic resonance. However, recent strides in mass spectrometry (MS)–based metabolomics present enhanced analytic opportunities to characterize a wide range of metabolites in the critical care setting. METHODS MS-based metabolomics analyses were performed on plasma samples from severely injured patients’ trauma activation field blood and plasma samples obtained during emergency department thoracotomy. These were compared against the metabolic profiles of healthy controls. RESULTS Few significant alterations were observed between trauma activation field blood and emergency department thoracotomy patients. In contrast, we identified trauma-dependent metabolic signatures, which support a state of hypercatabolism, driven by sugar consumption, lipolysis and fatty acid use, accumulation of ketone bodies, proteolysis and nucleoside breakdown, which provides carbon and nitrogen sources to compensate for trauma-induced energy consumption and negative nitrogen balance. Unexpectedly, metabolites of bacterial origin (including tricarballylate and citramalate) were detected in plasma from trauma patients. CONCLUSION In the future, the correlation between metabolomics adaptation and recovery outcomes could be studied by MS-based approaches, and this work can provide a method for assessing the efficacy of alternative resuscitation strategies.
Free Radical Biology and Medicine | 2016
Vassilis L. Tzounakas; Anastasios G. Kriebardis; Hara T. Georgatzakou; Leontini E. Foudoulaki-Paparizos; Monika Dzieciatkowska; Matthew J. Wither; Travis Nemkov; Kirk C. Hansen; Issidora S. Papassideri; Angelo D’Alessandro; Marianna H. Antonelou
Storage of packed red blood cells (RBCs) is associated with progressive accumulation of lesions, mostly triggered by energy and oxidative stresses, which potentially compromise the effectiveness of the transfusion therapy. Concerns arise as to whether glucose 6-phosphate dehydrogenase deficient subjects (G6PD(-)), ~5% of the population in the Mediterranean area, should be accepted as routine donors in the light of the increased oxidative stress their RBCs suffer from. To address this question, we first performed morphology (scanning electron microscopy), physiology and omics (proteomics and metabolomics) analyses on stored RBCs from healthy or G6PD(-) donors. We then used an in vitro model of transfusion to simulate transfusion outcomes involving G6PD(-) donors or recipients, by reconstituting G6PD(-) stored or fresh blood with fresh or stored blood from healthy volunteers, respectively, at body temperature. We found that G6PD(-) cells store well in relation to energy, calcium and morphology related parameters, though at the expenses of a compromised anti-oxidant system. Additional stimuli, mimicking post-transfusion conditions (37°C, reconstitution with fresh healthy blood, incubation with oxidants) promoted hemolysis and oxidative lesions in stored G6PD(-) cells in comparison to controls. On the other hand, stored healthy RBC units showed better oxidative parameters and lower removal signaling when reconstituted with G6PD(-) fresh blood compared to control. Although the measured parameters of stored RBCs from the G6PD deficient donors appeared to be acceptable, the results from the in vitro model of transfusion suggest that G6PD(-) RBCs could be more susceptible to hemolysis and oxidative stresses post-transfusion. On the other hand, their chronic exposure to oxidative stress might make them good recipients, as they better tolerate exposure to oxidatively damaged long stored healthy RBCs.
American Journal of Respiratory Cell and Molecular Biology | 2016
Lydie Plecitá-Hlavatá; Jan Tauber; Min Li; Hui Zhang; Amanda Flockton; Soni Savai Pullamsetti; Prakash Chelladurai; Angelo D’Alessandro; Karim C. El Kasmi; Petr Ježek; Kurt R. Stenmark
Remodeling of the distal pulmonary artery wall is a characteristic feature of pulmonary hypertension (PH). In hypoxic PH, the most substantial pathologic changes occur in the adventitia. Here, there is marked fibroblast proliferation and profound macrophage accumulation. These PH fibroblasts (PH-Fibs) maintain a hyperproliferative, apoptotic-resistant, and proinflammatory phenotype in ex vivo culture. Considering that a similar phenotype is observed in cancer cells, where it has been associated, at least in part, with specific alterations in mitochondrial metabolism, we sought to define the state of mitochondrial metabolism in PH-Fibs. In PH-Fibs, pyruvate dehydrogenase was markedly inhibited, resulting in metabolism of pyruvate to lactate, thus consistent with a Warburg-like phenotype. In addition, mitochondrial bioenergetics were suppressed and mitochondrial fragmentation was increased in PH-Fibs. Most importantly, complex I activity was substantially decreased, which was associated with down-regulation of the accessory subunit nicotinamide adenine dinucleotide reduced dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4). Owing to less-efficient ATP synthesis, mitochondria were hyperpolarized and mitochondrial superoxide production was increased. This pro-oxidative status was further augmented by simultaneous induction of cytosolic nicotinamide adenine dinucleotide phosphate reduced oxidase 4. Although acute and chronic exposure to hypoxia of adventitial fibroblasts from healthy control vessels induced increased glycolysis, it did not induce complex I deficiency as observed in PH-Fibs. This suggests that hypoxia alone is insufficient to induce NDUFS4 down-regulation and constitutive abnormalities in complex I. In conclusion, our study provides evidence that, in the pathogenesis of vascular remodeling in PH, alterations in fibroblast mitochondrial metabolism drive distinct changes in cellular behavior, which potentially occur independently of hypoxia.
Immunity | 2016
Devin P. Champagne; Ketki M. Hatle; Karen A. Fortner; Angelo D’Alessandro; Tina M. Thornton; Rui Yang; Daniel Torralba; Julen Tomás-Cortázar; Yong Woong Jun; Kyo Han Ahn; Kirk C. Hansen; Laura Haynes; Juan Anguita; Mercedes Rincon
Mitochondrial respiration is regulated in CD8(+) Txa0cells during the transition from naive to effector and memory cells, but mechanisms controlling this process have not been defined. Here we show that MCJ (methylation-controlled J protein) acted as an endogenous break for mitochondrial respiration in CD8(+) Txa0cells by interfering with the formation of electron transport chain respiratory supercomplexes. Metabolic profiling revealed enhanced mitochondrial metabolism in MCJ-deficient CD8(+) Txa0cells. Increased oxidative phosphorylation and subcellular ATP accumulation caused by MCJ deficiency selectively increased the secretion, but not expression, of interferon-γ. MCJ also adapted effector CD8(+) Txa0cell metabolism during the contraction phase. Consequently, memory CD8(+) Txa0cells lacking MCJ provided superior protection against influenza virus infection. Thus, MCJ offers a mechanism for fine-tuning CD8(+) Txa0cell mitochondrial metabolism as an alternative to modulating mitochondrial mass, an energetically expensive process. MCJ could be a therapeutic target to enhance CD8(+) Txa0cell responses.
American Journal of Respiratory Cell and Molecular Biology | 2017
Kara J. Mould; Lea Barthel; Michael P. Mohning; Stacey M. Thomas; Alexandra L. McCubbrey; Thomas Danhorn; Sonia M. Leach; Tasha E. Fingerlin; Brian P. O’Connor; Julie A. Reisz; Angelo D’Alessandro; Donna L. Bratton; Claudia V. Jakubzick; William J. Janssen
&NA; Two populations of alveolar macrophages (AMs) coexist in the inflamed lung: resident AMs that arise during embryogenesis, and recruited AMs that originate postnatally from circulating monocytes. The objective of this study was to determine whether origin or environment dictates the transcriptional, metabolic, and functional programming of these two ontologically distinct populations over the time course of acute inflammation. RNA sequencing demonstrated marked transcriptional differences between resident and recruited AMs affecting three main areas: proliferation, inflammatory signaling, and metabolism. Functional assays and metabolomic studies confirmed these differences and demonstrated that resident AMs proliferate locally and are governed by increased tricarboxylic acid cycle and amino acid metabolism. Conversely, recruited AMs produce inflammatory cytokines in association with increased glycolytic and arginine metabolism. Collectively, the data show that even though they coexist in the same environment, inflammatory macrophage subsets have distinct immunometabolic programs and perform specialized functions during inflammation that are associated with their cellular origin.
Haematologica | 2017
Travis Nemkov; Kaiqi Sun; Julie A. Reisz; Anren Song; Tatsuro Yoshida; Andrew Dunham; Matthew J. Wither; Richard O. Francis; Robert C. Roach; Monika Dzieciatkowska; Stephen C. Rogers; Allan Doctor; Anastasios G. Kriebardis; Marianna H. Antonelou; Issidora S. Papassideri; Carolyn T. Young; Tiffany Thomas; Kirk C. Hansen; Steven L. Spitalnik; Yang Xia; James C. Zimring; Eldad A. Hod; Angelo D’Alessandro
Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1–7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and – preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo. Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates.
International Immunology | 2015
Kirk C. Hansen; Angelo D’Alessandro; Cristina C. Clement; Laura Santambrogio
During the last 20 years a deeper understanding of the lymphatic circulatory system, lymph formation and composition has emerged. This review will examine the current knowledge on the organization of the lymphatic vascular tree, the formation of lymph from the extracellular fluid, lymph circulation and the lymph proteomic composition during physiological and pathological conditions. Formation of the lymph fluid is dependent on pressure gradients in the capillary beds and the composition of the endothelial cell glycocalyx, which acts as a molecular sieve. Fluid propulsion toward the draining node is dependent on the intrinsic pumping mechanism of the lymphangions and their unidirectional valves. The lymph omics composition is dependent on the ultrafiltration of plasma proteins as well as proteins and molecules derived from the metabolic and catabolic activities of each parenchymal organ from which the lymph drains. Altogether, these new insights have brought about a new awareness of the importance of the lymphatic system in human physiology and pathology.