Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karim C. El Kasmi is active.

Publication


Featured researches published by Karim C. El Kasmi.


PLOS Pathogens | 2009

Arginase-1–Expressing Macrophages Suppress Th2 Cytokine–Driven Inflammation and Fibrosis

John T. Pesce; Thirumalai R. Ramalingam; Margaret M. Mentink-Kane; Mark S. Wilson; Karim C. El Kasmi; Amber M. Smith; Robert W. Thompson; Allen W. Cheever; Peter J. Murray; Thomas A. Wynn

Macrophage-specific expression of Arginase-1 is commonly believed to promote inflammation, fibrosis, and wound healing by enhancing L-proline, polyamine, and Th2 cytokine production. Here, however, we show that macrophage-specific Arg1 functions as an inhibitor of inflammation and fibrosis following infection with the Th2-inducing pathogen Schistosoma mansoni. Although susceptibility to infection was not affected by the conditional deletion of Arg1 in macrophages, Arg1 −/flox ;LysMcre mice died at an accelerated rate. The mortality was not due to acute Th1/NOS2-mediated hepatotoxicity or endotoxemia. Instead, granulomatous inflammation, liver fibrosis, and portal hypertension increased in infected Arg1 −/flox ;LysMcre mice. Similar findings were obtained with Arg1 flox/flox ;Tie2cre mice, which delete Arg1 in all macrophage populations. Production of Th2 cytokines increased in the infected Arg1 −/flox ;LysMcre mice, and unlike alternatively activated wild-type macrophages, Arg1 −/flox ;LysMcre macrophages failed to inhibit T cell proliferation in vitro, providing an underlying mechanism for the exacerbated Th2 pathology. The suppressive activity of Arg1-expressing macrophages was independent of IL-10 and TGF-β1. However, when exogenous L-arginine was provided, T cell proliferation was restored, suggesting that Arg1-expressing macrophages deplete arginine, which is required to sustain CD4+ T cell responses. These data identify Arg1 as the essential suppressive mediator of alternatively activated macrophages (AAM) and demonstrate that Arg1-expressing macrophages function as suppressors rather than inducers of Th2-dependent inflammation and fibrosis.


Circulation | 2008

Hypoxia-Inducible Factor-1 Is Central to Cardioprotection A New Paradigm for Ischemic Preconditioning

Tobias Eckle; David Köhler; Rainer Lehmann; Karim C. El Kasmi; Holger K. Eltzschig

Background— Ischemic preconditioning provides strong cardioprotection from ischemia, but its molecular mechanisms remain unknown. Convincing evidence confirms a central role of hypoxia-inducible factor (HIF)-1 in mammalian oxygen homeostasis. Thus, we pursued HIF-1 as a central component of cardioprotection by ischemic preconditioning. Methods and Results— Murine studies of in situ preconditioning revealed a robust activation of cardiac HIF-1&agr;. Moreover, in vivo small interfering RNA repression of cardiac HIF-1&agr; resulted in abolished cardioprotection by ischemic preconditioning. In contrast, pretreatment with the HIF activator dimethyloxalylglycine was associated with cardioprotection similar to that of ischemic preconditioning itself. Finally, selective small interfering RNA repression of prolylhydroxylase 2 resulted in significant activation of HIF-1&agr; and attenuated myocardial infarct sizes (0.44±0.09-fold). As an end point of HIF-dependent cardioprotection, we defined the role of A2B adenosine receptor (A2BAR) signaling. Although the cardiac A2BAR was induced with HIF activation, HIF-dependent cardioprotection was abolished in A2BAR−/− mice. Conclusion— Taken together, these studies provide evidence for a critical role of HIF-1 in ischemic preconditioning via enhancing purinergic signaling pathways.


Journal of Immunology | 2006

General Nature of the STAT3-Activated Anti-Inflammatory Response

Karim C. El Kasmi; Jeff Holst; Maryaline Coffre; Lisa A. Mielke; Antoine de Pauw; Nouara Lhocine; Amber M. Smith; Robert Rutschman; Deepak Kaushal; Yuhong Shen; Takashi Suda; Raymond P. Donnelly; Martin G. Myers; Warren S. Alexander; Dario A. A. Vignali; Stephanie S. Watowich; Matthias Ernst; Douglas J. Hilton; Peter J. Murray

Although many cytokine receptors generate their signals via the STAT3 pathway, the IL-10R appears unique in promoting a potent anti-inflammatory response (AIR) via STAT3 to antagonize proinflammatory signals that activate the innate immune response. We found that heterologous cytokine receptor systems that activate STAT3 but are naturally refractory (the IL-22R), or engineered to be refractory (the IL-6, leptin, and erythropoietin receptors), to suppressor of cytokine signaling-3-mediated inhibition activate an AIR indistinguishable from IL-10. We conclude that the AIR is a generic cytokine signaling pathway dependent on STAT3 but not unique to the IL-10R.


Annual Review of Physiology | 2013

The Adventitia: Essential Regulator of Vascular Wall Structure and Function

Kurt R. Stenmark; Michael E. Yeager; Karim C. El Kasmi; Eva Nozik-Grayck; Evgenia V. Gerasimovskaya; Min Li; Suzette R. Riddle; Maria G. Frid

The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in.


Journal of Immunology | 2011

Emergence of Fibroblasts with a Proinflammatory Epigenetically Altered Phenotype in Severe Hypoxic Pulmonary Hypertension

Min Li; Suzette R. Riddle; Maria G. Frid; Karim C. El Kasmi; Timothy A. McKinsey; Ronald J. Sokol; Derek Strassheim; Barbara Meyrick; Michael E. Yeager; Amanda Flockton; B. Alexandre McKeon; Douglas D. Lemon; Todd R. Horn; Adil Anwar; Carlos Barajas; Kurt R. Stenmark

Persistent accumulation of monocytes/macrophages in the pulmonary artery adventitial/perivascular areas of animals and humans with pulmonary hypertension has been documented. The cellular mechanisms contributing to chronic inflammatory responses remain unclear. We hypothesized that perivascular inflammation is perpetuated by activated adventitial fibroblasts, which, through sustained production of proinflammatory cytokines/chemokines and adhesion molecules, induce accumulation, retention, and activation of monocytes/macrophages. We further hypothesized that this proinflammatory phenotype is the result of the abnormal activity of histone-modifying enzymes, specifically, class I histone deacetylases (HDACs). Pulmonary adventitial fibroblasts from chronically hypoxic hypertensive calves (termed PH-Fibs) expressed a constitutive and persistent proinflammatory phenotype defined by high expression of IL-1β, IL-6, CCL2(MCP-1), CXCL12(SDF-1), CCL5(RANTES), CCR7, CXCR4, GM-CSF, CD40, CD40L, and VCAM-1. The proinflammatory phenotype of PH-Fibs was associated with epigenetic alterations as demonstrated by increased activity of HDACs and the findings that class I HDAC inhibitors markedly decreased cytokine/chemokine mRNA expression levels in these cells. PH-Fibs induced increased adhesion of THP-1 monocytes and produced soluble factors that induced increased migration of THP-1 and murine bone marrow-derived macrophages as well as activated monocytes/macrophages to express proinflammatory cytokines and profibrogenic mediators (TIMP1 and type I collagen) at the transcriptional level. Class I HDAC inhibitors markedly reduced the ability of PH-Fibs to induce monocyte migration and proinflammatory activation. The emergence of a distinct adventitial fibroblast population with an epigenetically altered proinflammatory phenotype capable of recruiting, retaining, and activating monocytes/macrophages characterizes pulmonary hypertension-associated vascular remodeling and thus could contribute significantly to chronic inflammatory processes in the pulmonary artery wall.


PLOS ONE | 2008

ATP Release from Vascular Endothelia Occurs Across Cx43 Hemichannels and Is Attenuated during Hypoxia

Marion Faigle; Jessica Seessle; Stephanie Zug; Karim C. El Kasmi; Holger K. Eltzschig

Background Extracellular ATP is an important signaling molecule for vascular adaptation to limited oxygen availability (hypoxia). Here, we pursued the contribution of vascular endothelia to extracellular ATP release under hypoxic conditions. Methodology, Principal Findings We gained first insight from studying ATP release from endothelia (HMEC-1) pre-exposed to hypoxia. Surprisingly, we found that ATP release was significantly attenuated following hypoxia exposure (2% oxygen, 22±3% after 48 h). In contrast, intracellular ATP was unchanged. Similarly, lactate-dehydrogenase release into the supernatants was similar between normoxic or hypoxic endothelia, suggesting that differences in lytic ATP release between normoxia or hypoxia are minimal. Next, we used pharmacological strategies to study potential mechanisms for endothelial-dependent ATP release (eg, verapamil, dipyridamole, 18-alpha-glycyrrhetinic acid, anandamide, connexin-mimetic peptides). These studies revealed that endothelial ATP release occurs – at least in part - through connexin 43 (Cx43) hemichannels. A real-time RT-PCR screen of endothelial connexin expression showed selective repression of Cx43 transcript and additional studies confirmed time-dependent Cx43 mRNA, total and surface protein repression during hypoxia. In addition, hypoxia resulted in Cx43-serine368 phosphorylation, which is known to switch Cx43 hemi-channels from an open to a closed state. Conclusions/Significance Taken together, these studies implicate endothelial Cx43 in hypoxia-associated repression of endothelial ATP release.


Journal of Biological Chemistry | 2013

Bile Acid Receptor Activation Modulates Hepatic Monocyte Activity and Improves Nonalcoholic Fatty Liver Disease

Rachel H. McMahan; Xiaoxin X. Wang; Lin Ling Cheng; Tibor I. Krisko; Maxwell L. Smith; Karim C. El Kasmi; Mark Pruzanski; Luciano Adorini; Lucy Golden-Mason; Moshe Levi; Hugo R. Rosen

Background: The bile acid receptors FXR and TGR5 have pleiotropic functions, including immune modulation. Results: Treatment of a murine model of nonalcoholic fatty liver disease (NAFLD) with a dual FXR/TGR5 agonist decreased intrahepatic inflammation and altered the immune phenotype of monocytes. Conclusion: Bile acid receptor activation improves NAFLD. Significance: These results identify potential targeting strategies for treatment of NAFLD. Nonalcoholic fatty liver disease (NAFLD) affects a large proportion of the American population. The spectrum of disease ranges from bland steatosis without inflammation to nonalcoholic steatohepatitis and cirrhosis. Bile acids are critical regulators of hepatic lipid and glucose metabolism and signal through two major receptor pathways: farnesoid X receptor (FXR), a member of the nuclear hormone receptor superfamily, and TGR5, a G protein-coupled bile acid receptor (GPBAR1). Both FXR and TGR5 demonstrate pleiotropic functions, including immune modulation. To evaluate the effects of these pathways in NAFLD, we treated obese db/db mice with a dual FXR/TGR5 agonist (INT-767) for 6 weeks. Treatment with the agonist significantly improved the histological features of nonalcoholic steatohepatitis. Furthermore, treatment increased the proportion of intrahepatic monocytes with the anti-inflammatory Ly6Clow phenotype and increased intrahepatic expression of genes expressed by alternatively activated macrophages, including CD206, Retnla, and Clec7a. In vitro treatment of monocytes with INT-767 led to decreased Ly6C expression and increased IL-10 production through a cAMP-dependent pathway. Our data indicate that FXR/TGR5 activation coordinates the immune phenotype of monocytes and macrophages, both in vitro and in vivo, identifying potential targeting strategies for treatment of NAFLD.


Journal of Immunology | 2007

Cutting Edge: A Transcriptional Repressor and Corepressor Induced by the STAT3-Regulated Anti-Inflammatory Signaling Pathway

Karim C. El Kasmi; Amber M. Smith; Lynn M. Williams; Geoffrey Neale; Athanasia Panopolous; Stephanie S. Watowich; Hans Häcker; Brian M. J. Foxwell; Peter J. Murray

IL-10 regulates anti-inflammatory signaling via the activation of STAT3, which in turn controls the induction of a gene expression program whose products execute inhibitory effects on proinflammatory mediator production. In this study we show that IL-10 induces the expression of an ETS family transcriptional repressor, ETV3, and a helicase family corepressor, Strawberry notch homologue 2 (SBNO2), in mouse and human macrophages. IL-10-mediated induction of ETV3 and SBNO2 expression was dependent upon both STAT3 and a stimulus through the TLR pathway. We also observed that ETV3 expression was strongly induced by the STAT3 pathway regulated by IL-10 but not by STAT3 signaling activated by IL-6, which cannot activate the anti-inflammatory signaling pathway. ETV3 and SBNO2 repressed NF-κB- but not IFN regulatory factor 7 (IRF7)-activated transcriptional reporters. Collectively our data suggest that ETV3 and SBNO2 are components of the pathways that contribute to the downstream anti-inflammatory effects of IL-10.


Hepatology | 2012

Toll-like receptor 4–dependent Kupffer cell activation and liver injury in a novel mouse model of parenteral nutrition and intestinal injury†‡

Karim C. El Kasmi; Aimee L. Anderson; Michael W. Devereaux; Sophie Fillon; J. Kirk Harris; Mark A. Lovell; Milton J. Finegold; Ronald J. Sokol

Infants with intestinal failure who are parenteral nutrition (PN)‐dependent may develop cholestatic liver injury and cirrhosis (PN‐associated liver injury: PNALI). The pathogenesis of PNALI remains incompletely understood. We hypothesized that intestinal injury with increased intestinal permeability combined with administration of PN promotes lipopolysaccharide (LPS)–Toll‐like receptor 4 (TLR4) signaling dependent Kupffer cell (KC) activation as an early event in the pathogenesis of PNALI. We developed a mouse model in which intestinal injury and increased permeability were induced by oral treatment for 4 days with dextran sulphate sodium (DSS) followed by continuous infusion of soy lipid‐based PN solution through a central venous catheter for 7 (PN7d/DSS) and 28 (PN28d/DSS) days. Purified KCs were probed for transcription of proinflammatory cytokines. PN7d/DSS mice showed increased intestinal permeability and elevated portal vein LPS levels, evidence of hepatocyte injury and cholestasis (serum aspartate aminotransferase, alanine aminotransferase, bile acids, total bilirubin), and increased KC expression of interleukin‐6 (Il6), tumor necrosis factor α (Tnfα), and transforming growth factor β (Tgfβ). Markers of liver injury remained elevated in PN28d/DSS mice associated with lobular inflammation, hepatocyte apoptosis, peliosis, and KC hypertrophy and hyperplasia. PN infusion without DSS pretreatment or DSS pretreatment alone did not result in liver injury or KC activation, even though portal vein LPS levels were elevated. Suppression of the intestinal microbiota with broad spectrum antibiotics or ablation of TLR4 signaling in Tlr4 mutant mice resulted in significantly reduced KC activation and markedly attenuated liver injury in PN7d/DSS mice. Conclusion: These data suggest that intestinal‐derived LPS activates KC through TLR4 signaling in early stages of PNALI. (HEPATOLOGY 2012)


Journal of Immunology | 2009

LAG-3 Regulates Plasmacytoid Dendritic Cell Homeostasis

Creg J. Workman; Yao Wang; Karim C. El Kasmi; Drew M. Pardoll; Peter J. Murray; Charles G. Drake; Dario A. A. Vignali

Lymphocyte activation gene 3 (LAG-3) is a CD4-related, activation-induced cell surface molecule expressed by various lymphoid cell types and binds to MHC class II with high affinity. We have previously shown that LAG-3 negatively regulates the expansion of activated T cells and T cell homeostasis, and is required for maximal regulatory T cell function. In this study, we demonstrate for the first time that LAG-3 is also expressed on CD11clow/B220+/PDCA-1+ plasmacytoid dendritic cells (pDCs). Lag3 expression, as determined by real time PCR, was ∼10-fold greater in pDCs than in either regulatory T cells or activated T effector cells. Activated pDCs also generate ∼5 times more sLAG-3 than activated T cells. LAG-3-deficient pDCs proliferate and expand more than wild-type pDCs in vivo in response to the TLR9 ligand, CpG. However, the effect of LAG-3 appears to be selective as there was no effect of LAG-3 on the expression of MHC class II, TLR9, and chemokine receptors, or on cytokine production. Lastly, adoptive transfer of either Lag3+/+ or Lag3−/− T cells plus or minus Lag3+/+ or Lag3−/− pDCs defined a role for LAG-3 in controlling pDC homeostasis as well as highlighting the consequences of deregulated Lag3−/− pDCs on T cell homeostasis. This raised the possibility of homeostatic reciprocity between T cells and pDCs. Collectively, our data suggests that LAG-3 plays an important but selective cell intrinsic and cell extrinsic role in pDC biology, and may serve as a key functional marker for their study.

Collaboration


Dive into the Karim C. El Kasmi's collaboration.

Top Co-Authors

Avatar

Kurt R. Stenmark

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Peter J. Murray

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Maria G. Frid

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Min Li

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Amber M. Smith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Suzette R. Riddle

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Aimee L. Anderson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Ronald J. Sokol

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Amanda Flockton

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Elaine Tuomanen

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge