Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angus C. Wilson is active.

Publication


Featured researches published by Angus C. Wilson.


Molecular and Cellular Biology | 2009

Association of C-Terminal Ubiquitin Hydrolase BRCA1-Associated Protein 1 with Cell Cycle Regulator Host Cell Factor 1

Shahram Misaghi; Søren Ottosen; Anita Izrael-Tomasevic; David Arnott; Mohamed Lamkanfi; Jimmy Lee; Jinfeng Liu; Karen O'Rourke; Vishva M. Dixit; Angus C. Wilson

ABSTRACT Protein ubiquitination provides an efficient and reversible mechanism to regulate cell cycle progression and checkpoint control. Numerous regulatory proteins direct the addition of ubiquitin to lysine residues on target proteins, and these are countered by an army of deubiquitinating enzymes (DUBs). BRCA1-associated protein-1 (Bap1) is a ubiquitin carboxy-terminal hydrolase and is frequently mutated in lung and sporadic breast tumors. Bap1 can suppress growth of lung cancer cells in athymic nude mice and this requires its DUB activity. We show here that Bap1 interacts with host cell factor 1 (HCF-1), a transcriptional cofactor found in a number of important regulatory complexes. Bap1 binds to the HCF-1 β-propeller using a variant of the HCF-binding motif found in herpes simplex virus VP16 and other HCF-interacting proteins. HCF-1 is K48 and K63 ubiquitinated, with a major site of linkage at lysines 1807 and 1808 in the HCF-1C subunit. Expression of a catalytically inactive version of Bap1 results in the selective accumulation of K48 ubiquitinated polypeptides. Depletion of Bap1 using small interfering RNA results in a modest accumulation of HCF-1C, suggesting that Bap1 helps to control cell proliferation by regulating HCF-1 protein levels and by associating with genes involved in the G1-S transition.


Cell Host & Microbe | 2010

Nature and Duration of Growth Factor Signaling through Receptor Tyrosine Kinases Regulates HSV-1 Latency in Neurons

Vladimir Camarena; Mariko Kobayashi; Ju Youn Kim; Pamela C. Roehm; Rosalia Perez; James Gardner; Angus C. Wilson; Ian Mohr; Moses V. Chao

Herpes simplex virus-1 (HSV-1) establishes life-long latency in peripheral neurons where productive replication is suppressed. While periodic reactivation results in virus production, the molecular basis of neuronal latency remains incompletely understood. Using a primary neuronal culture system of HSV-1 latency and reactivation, we show that continuous signaling through the phosphatidylinositol 3-kinase (PI3-K) pathway triggered by nerve growth factor (NGF)-binding to the TrkA receptor tyrosine kinase (RTK) is instrumental in maintaining latent HSV-1. The PI3-K p110α catalytic subunit, but not the β or δ isoforms, is specifically required to activate 3-phosphoinositide-dependent protein kinase-1 (PDK1) and sustain latency. Disrupting this pathway leads to virus reactivation. EGF and GDNF, two other growth factors capable of activating PI3-K and PDK1 but that differ from NGF in their ability to persistently activate Akt, do not fully support HSV-1 latency. Thus, the nature of RTK signaling is a critical host parameter that regulates the HSV-1 latent-lytic switch.


Journal of Virology | 2005

Transcripts Encoding K12, v-FLIP, v-Cyclin, and the MicroRNA Cluster of Kaposi's Sarcoma-Associated Herpesvirus Originate from a Common Promoter

Michael Pearce; Satoko Matsumura; Angus C. Wilson

ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV) is the causative agent of three malignancies associated with AIDS and immunosuppression. Tumor cells harbor latent virus and express kaposin (open reading frame [ORF] K12), v-FLIP (ORF 71), v-Cyclin (ORF 72), and latency-associated nuclear antigen (LANA; ORF 73). ORFs 71 to 73 are transcribed as multicistronic RNAs initiating from adjacent constitutive and inducible promoters upstream of ORF 73. Here we characterize a third promoter embedded within the ORF 71-to-73 transcription unit specifying transcripts that encode ORF 71/72 or K12. These transcripts may also be the source of 11 microRNAs arranged as a cluster between K12 and ORF 71. Our studies reveal a complex arrangement of interlaced transcription units, incorporating four important protein-encoding genes required for latency and pathogenesis and the entire KSHV microRNA repertoire.


PLOS Pathogens | 2012

Transient reversal of episome silencing precedes VP16-dependent transcription during reactivation of latent HSV-1 in neurons.

Ju Youn Kim; Angelo Mandarino; Moses V. Chao; Ian Mohr; Angus C. Wilson

Herpes simplex virus type-1 (HSV-1) establishes latency in peripheral neurons, creating a permanent source of recurrent infections. The latent genome is assembled into chromatin and lytic cycle genes are silenced. Processes that orchestrate reentry into productive replication (reactivation) remain poorly understood. We have used latently infected cultures of primary superior cervical ganglion (SCG) sympathetic neurons to profile viral gene expression following a defined reactivation stimulus. Lytic genes are transcribed in two distinct phases, differing in their reliance on protein synthesis, viral DNA replication and the essential initiator protein VP16. The first phase does not require viral proteins and has the appearance of a transient, widespread de-repression of the previously silent lytic genes. This allows synthesis of viral regulatory proteins including VP16, which accumulate in the cytoplasm of the host neuron. During the second phase, VP16 and its cellular cofactor HCF-1, which is also predominantly cytoplasmic, concentrate in the nucleus where they assemble an activator complex on viral promoters. The transactivation function supplied by VP16 promotes increased viral lytic gene transcription leading to the onset of genome amplification and the production of infectious viral particles. Thus regulated localization of de novo synthesized VP16 is likely to be a critical determinant of HSV-1 reactivation in sympathetic neurons.


PLOS Pathogens | 2009

Activation of Host Translational Control Pathways by a Viral Developmental Switch

Carolina Arias; Derek Walsh; Jack Harbell; Angus C. Wilson; Ian Mohr

In response to numerous signals, latent herpesvirus genomes abruptly switch their developmental program, aborting stable host–cell colonization in favor of productive viral replication that ultimately destroys the cell. To achieve a rapid gene expression transition, newly minted capped, polyadenylated viral mRNAs must engage and reprogram the cellular translational apparatus. While transcriptional responses of viral genomes undergoing lytic reactivation have been amply documented, roles for cellular translational control pathways in enabling the latent-lytic switch have not been described. Using PEL-derived B-cells naturally infected with KSHV as a model, we define efficient reactivation conditions and demonstrate that reactivation substantially changes the protein synthesis profile. New polypeptide synthesis correlates with 4E-BP1 translational repressor inactivation, nuclear PABP accumulation, eIF4F assembly, and phosphorylation of the cap-binding protein eIF4E by Mnk1. Significantly, inhibiting Mnk1 reduces accumulation of the critical viral transactivator RTA through a post-transcriptional mechanism, limiting downstream lytic protein production, and impairs reactivation efficiency. Thus, herpesvirus reactivation from latency activates the host cap-dependent translation machinery, illustrating the importance of translational regulation in implementing new developmental instructions that drastically alter cell fate.


Journal of Virology | 2005

Activation of the Kaposi's Sarcoma-Associated Herpesvirus Major Latency Locus by the Lytic Switch Protein RTA (ORF50)

Satoko Matsumura; Yuriko Fujita; Evan Gomez; Naoko Tanese; Angus C. Wilson

ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV) maintains a latent infection in primary effusion lymphoma cells but can be induced to enter full lytic replication by exposure to a variety of chemical inducing agents or by expression of the KSHV-encoded replication and transcription activator (RTA) protein. During latency, only a few viral genes are expressed, and these include the three genes of the so-called latency transcript (LT) cluster: v-FLIP (open reading frame 71 [ORF71]), v-cyclin (ORF72), and latency-associated nuclear antigen (ORF73). During latency, all three open reading frames are transcribed from a common promoter as part of a multicistronic mRNA. Subsequent alternative mRNA splicing and internal ribosome entry allows for the expression of each protein. Here, we show that transcription of LT cassette mRNA can be induced by RTA through the activation of a second promoter (LTi) immediately downstream of the constitutively active promoter (LTc). We identified a minimal cis-regulatory region, which overlaps with the promoter for the bicistronic K14/v-GPCR delayed early gene that is transcribed in the opposite direction. In addition to a TATA box at −30 relative to the LTi mRNA start sites, we identified three separate RTA response elements that are also utilized by the K14/v-GPCR promoter. Interestingly, LTi is unresponsive to sodium butyrate, a potent inducer of lytic replication. This suggests there is a previously unrecognized class of RTA-responsive promoters that respond to direct, but not indirect, induction of RTA. These studies highlight the fact that induction method can influence the precise program of viral gene expression during early events in reactivation and also suggest a mechanism by which RTA contributes to establishment of latency during de novo infections.


Journal of Virology | 2010

The Latency-Associated Nuclear Antigen Interacts with MeCP2 and Nucleosomes through Separate Domains

Satoko Matsumura; Linda M. Persson; LaiYee Wong; Angus C. Wilson

ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV)-infected cells express the latency-associated nuclear antigen (LANA) involved in the regulation of host and viral gene expression and maintenance of the KSHV latent episome. Performance of these diverse functions involves a 7-amino-acid chromatin-binding motif (CBM) situated at the amino terminus of LANA that is capable of binding directly to nucleosomes. LANA interacts with additional chromatin components, including methyl-CpG-binding protein 2 (MeCP2). Here, we show that the carboxy-terminal DNA-binding/dimerization domain of LANA provides the principal interaction with MeCP2 but that this association is modulated by the CBM. Both domains are required for LANA to colocalize with MeCP2 at chromocenters, regions of extensive pericentric heterochromatin that can be imaged by fluorescence microscopy. Within MeCP2, the methyl-CpG-binding domain (MBD) is the primary determinant for chromatin localization and acts together with the adjacent repression domains (the transcription repression domain [TRD] and the corepressor-interacting domain [CRID]) to redirect LANA to chromocenters. MeCP2 facilitates repression by LANA bound to the KSHV terminal repeats, a function that requires the MeCP2 C terminus in addition to the MBD and CRID/TRD. LANA and MeCP2 can also cooperate to stimulate transcription of the human E2F1 promoter, which lacks a LANA DNA-binding sequence, but this function requires both the N and C termini of LANA. The ability of LANA to establish multivalent interactions with histones and chromatin-binding proteins such as MeCP2 would enable LANA to direct regulatory complexes to specific chromosomal sites and thereby achieve stable reprogramming of cellular gene expression in latently infected cells.


Journal of Virology | 2004

Transcriptional Activation by the Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Is Facilitated by an N-Terminal Chromatin-Binding Motif

Lai Yee Wong; Gerald Matchett; Angus C. Wilson

ABSTRACT In immunocompromised patients, infection with Kaposis sarcoma-associated herpesvirus (KSHV) can give rise to Kaposis sarcoma and several lymphoproliferative disorders. In these tumors, KSHV establishes a latent infection in many of the rapidly proliferating and morphologically abnormal cells. Only a few viral gene products are expressed by the latent virus, and one of the best characterized is the latency-associated nuclear antigen (LANA), a nuclear protein required for the maintenance of viral episomal DNA in the dividing host cell. LANA can also activate or repress an assortment of cellular and viral promoters and may contribute to pathogenesis by allowing the proliferation and survival of host cells. Here we show that activation of the human E2F1 and cyclin-dependent kinase-2 (CDK2) promoters requires elements from both the N- and C-terminal regions of LANA. Deletion of the first 22 amino acids, which are necessary for episome tethering, does not affect nuclear localization but significantly reduces transactivation. Within the deleted peptide, we have identified a short sequence, termed the chromatin-binding motif (CBM), that binds tightly to interphase and mitotic chromatin. A second chromatin-binding activity resides in the C terminus but is not sufficient for optimal transactivation. Alanine substitutions within the CBM reveal a close correlation between the transactivation and chromatin binding activities, implying a mechanistic link. In contrast to promoter activation, we find that the 223 amino acids of the LANA C terminus are sufficient to inhibit p53-mediated activation of the human BAX promoter, indicating that the CBM is not required for all transcription-related functions.


Genes & Development | 2012

Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation repressor

Mariko Kobayashi; Angus C. Wilson; Moses V. Chao; Ian Mohr

Latent herpes simplex virus-1 (HSV1) genomes in peripheral nerve ganglia periodically reactivate, initiating a gene expression program required for productive replication. Whether molecular cues detected by axons can be relayed to cell bodies and harnessed to regulate latent genome expression in neuronal nuclei is unknown. Using a neuron culture model, we found that inhibiting mTOR, depleting its regulatory subunit raptor, or inducing hypoxia all trigger reactivation. While persistent mTORC1 activation suppressed reactivation, a mutant 4E-BP (eIF4E-binding protein) translational repressor unresponsive to mTORC1 stimulated reactivation. Finally, inhibiting mTOR in axons induced reactivation. Thus, local changes in axonal mTOR signaling that control translation regulate latent HSV1 genomes in a spatially segregated compartment.


Journal of Visualized Experiments | 2012

A primary neuron culture system for the study of herpes simplex virus latency and reactivation.

Mariko Kobayashi; Ju-Youn Kim; Vladimir Camarena; Pamela C. Roehm; Moses V. Chao; Angus C. Wilson; Ian Mohr

Herpes simplex virus type-1 (HSV-1) establishes a life-long latent infection in peripheral neurons. This latent reservoir is the source of recurrent reactivation events that ensure transmission and contribute to clinical disease. Current antivirals do not impact the latent reservoir and there are no vaccines. While the molecular details of lytic replication are well-characterized, mechanisms controlling latency in neurons remain elusive. Our present understanding of latency is derived from in vivo studies using small animal models, which have been indispensable for defining viral gene requirements and the role of immune responses. However, it is impossible to distinguish specific effects on the virus-neuron relationship from more general consequences of infection mediated by immune or non-neuronal support cells in live animals. In addition, animal experimentation is costly, time-consuming, and limited in terms of available options for manipulating host processes. To overcome these limitations, a neuron-only system is desperately needed that reproduces the in vivo characteristics of latency and reactivation but offers the benefits of tissue culture in terms of homogeneity and accessibility. Here we present an in vitro model utilizing cultured primary sympathetic neurons from rat superior cervical ganglia (SCG) (Figure 1) to study HSV-1 latency and reactivation that fits most if not all of the desired criteria. After eliminating non-neuronal cells, near-homogeneous TrkA(+) neuron cultures are infected with HSV-1 in the presence of acyclovir (ACV) to suppress lytic replication. Following ACV removal, non-productive HSV-1 infections that faithfully exhibit accepted hallmarks of latency are efficiently established. Notably, lytic mRNAs, proteins, and infectious virus become undetectable, even in the absence of selection, but latency-associated transcript (LAT) expression persists in neuronal nuclei. Viral genomes are maintained at an average copy number of 25 per neuron and can be induced to productively replicate by interfering with PI3-Kinase / Akt signaling or the simple withdrawal of nerve growth factor(1). A recombinant HSV-1 encoding EGFP fused to the viral lytic protein Us11 provides a functional, real-time marker for replication resulting from reactivation that is readily quantified. In addition to chemical treatments, genetic methodologies such as RNA-interference or gene delivery via lentiviral vectors can be successfully applied to the system permitting mechanistic studies that are very difficult, if not impossible, in animals. In summary, the SCG-based HSV-1 latency / reactivation system provides a powerful, necessary tool to unravel the molecular mechanisms controlling HSV1 latency and reactivation in neurons, a long standing puzzle in virology whose solution may offer fresh insights into developing new therapies that target the latent herpesvirus reservoir.

Collaboration


Dive into the Angus C. Wilson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariko Kobayashi

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge