Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anita Izrael-Tomasevic is active.

Publication


Featured researches published by Anita Izrael-Tomasevic.


The EMBO Journal | 2010

c‐IAP1 and UbcH5 promote K11‐linked polyubiquitination of RIP1 in TNF signalling

Jasmin N. Dynek; Tatiana Goncharov; Erin C. Dueber; Anna V. Fedorova; Anita Izrael-Tomasevic; Lilian Phu; Elizabeth Helgason; Wayne J. Fairbrother; Kurt Deshayes; Donald S. Kirkpatrick; Domagoj Vucic

Ubiquitin ligases are critical components of the ubiquitination process that determine substrate specificity and, in collaboration with E2 ubiquitin‐conjugating enzymes, regulate the nature of polyubiquitin chains assembled on their substrates. Cellular inhibitor of apoptosis (c‐IAP1 and c‐IAP2) proteins are recruited to TNFR1‐associated signalling complexes where they regulate receptor‐stimulated NF‐κB activation through their RING domain ubiquitin ligase activity. Using a directed yeast two‐hybrid screen, we found several novel and previously identified E2 partners of IAP RING domains. Among these, the UbcH5 family of E2 enzymes are critical regulators of the stability of c‐IAP1 protein following destabilizing stimuli such as TWEAK or CD40 signalling or IAP antagonists. We demonstrate that c‐IAP1 and UbcH5 family promote K11‐linked polyubiquitination of receptor‐interacting protein 1 (RIP1) in vitro and in vivo. We further show that TNFα‐stimulated NF‐κB activation involves endogenous K11‐linked ubiquitination of RIP1 within the TNFR1 signalling complex that is c‐IAP1 and UbcH5 dependent. Lastly, NF‐κB essential modifier efficiently binds K11‐linked ubiquitin chains, suggesting that this ubiquitin linkage may have a signalling role in the activation of proliferative cellular pathways.


Nature | 2012

Phosphorylation of NLRC4 is critical for inflammasome activation

Yan Qu; Shahram Misaghi; Anita Izrael-Tomasevic; Kim Newton; Laurie L. Gilmour; Mohamed Lamkanfi; Salina Louie; Nobuhiko Kayagaki; Jinfeng Liu; Laszlo Komuves; James E. Cupp; David Arnott; Denise M. Monack; Vishva M. Dixit

NLRC4 is a cytosolic member of the NOD-like receptor family that is expressed in innate immune cells. It senses indirectly bacterial flagellin and type III secretion systems, and responds by assembling an inflammasome complex that promotes caspase-1 activation and pyroptosis. Here we use knock-in mice expressing NLRC4 with a carboxy-terminal 3×Flag tag to identify phosphorylation of NLRC4 on a single, evolutionarily conserved residue, Ser 533, following infection of macrophages with Salmonella enterica serovar Typhimurium (also known as Salmonella typhimurium). Western blotting with a NLRC4 phospho-Ser 533 antibody confirmed that this post-translational modification occurs only in the presence of stimuli known to engage NLRC4 and not the related protein NLRP3 or AIM2. Nlrc4−/− macrophages reconstituted with NLRC4 mutant S533A, unlike those reconstituted with wild-type NLRC4, did not activate caspase-1 and pyroptosis in response to S. typhimurium, indicating that S533 phosphorylation is critical for NLRC4 inflammasome function. Conversely, phosphomimetic NLRC4 S533D caused rapid macrophage pyroptosis without infection. Biochemical purification of the NLRC4-phosphorylating activity and a screen of kinase inhibitors identified PRKCD (PKCδ) as a candidate NLRC4 kinase. Recombinant PKCδ phosphorylated NLRC4 S533 in vitro, immunodepletion of PKCδ from macrophage lysates blocked NLRC4 S533 phosphorylation in vitro, and Prkcd−/− macrophages exhibited greatly attenuated caspase-1 activation and IL-1β secretion specifically in response to S. typhimurium. Phosphorylation-defective NLRC4 S533A failed to recruit procaspase-1 and did not assemble inflammasome specks during S. typhimurium infection, so phosphorylation of NLRC4 S533 probably drives conformational changes necessary for NLRC4 inflammasome activity and host innate immunity.


Molecular and Cellular Biology | 2009

Association of C-Terminal Ubiquitin Hydrolase BRCA1-Associated Protein 1 with Cell Cycle Regulator Host Cell Factor 1

Shahram Misaghi; Søren Ottosen; Anita Izrael-Tomasevic; David Arnott; Mohamed Lamkanfi; Jimmy Lee; Jinfeng Liu; Karen O'Rourke; Vishva M. Dixit; Angus C. Wilson

ABSTRACT Protein ubiquitination provides an efficient and reversible mechanism to regulate cell cycle progression and checkpoint control. Numerous regulatory proteins direct the addition of ubiquitin to lysine residues on target proteins, and these are countered by an army of deubiquitinating enzymes (DUBs). BRCA1-associated protein-1 (Bap1) is a ubiquitin carboxy-terminal hydrolase and is frequently mutated in lung and sporadic breast tumors. Bap1 can suppress growth of lung cancer cells in athymic nude mice and this requires its DUB activity. We show here that Bap1 interacts with host cell factor 1 (HCF-1), a transcriptional cofactor found in a number of important regulatory complexes. Bap1 binds to the HCF-1 β-propeller using a variant of the HCF-binding motif found in herpes simplex virus VP16 and other HCF-interacting proteins. HCF-1 is K48 and K63 ubiquitinated, with a major site of linkage at lysines 1807 and 1808 in the HCF-1C subunit. Expression of a catalytically inactive version of Bap1 results in the selective accumulation of K48 ubiquitinated polypeptides. Depletion of Bap1 using small interfering RNA results in a modest accumulation of HCF-1C, suggesting that Bap1 helps to control cell proliferation by regulating HCF-1 protein levels and by associating with genes involved in the G1-S transition.


Biochemical Journal | 2009

Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2(1).

John W. Blankenship; Eugene Varfolomeev; Tatiana Goncharov; Anna V. Fedorova; Donald S. Kirkpatrick; Anita Izrael-Tomasevic; Lilian Phu; David Arnott; Mariam Aghajan; Kerry Zobel; J. Fernando Bazan; Wayne J. Fairbrother; Kurt Deshayes; Domagoj Vucic

A family of anti-apoptotic regulators known as IAP (inhibitor of apoptosis) proteins interact with multiple cellular partners and inhibit apoptosis induced by a variety of stimuli. c-IAP (cellular IAP) 1 and 2 are recruited to TNFR1 (tumour necrosis factor receptor 1)-associated signalling complexes, where they mediate receptor-induced NF-kappaB (nuclear factor kappaB) activation. Additionally, through their E3 ubiquitin ligase activities, c-IAP1 and c-IAP2 promote proteasomal degradation of NIK (NF-kappaB-inducing kinase) and regulate the non-canonical NF-kappaB pathway. In the present paper, we describe a novel ubiquitin-binding domain of IAPs. The UBA (ubiquitin-associated) domain of IAPs is located between the BIR (baculovirus IAP repeat) domains and the CARD (caspase activation and recruitment domain) or the RING (really interesting new gene) domain of c-IAP1 and c-IAP2 or XIAP (X-linked IAP) respectively. The c-IAP1 UBA domain binds mono-ubiquitin and Lys(48)- and Lys(63)-linked polyubiquitin chains with low-micromolar affinities as determined by surface plasmon resonance or isothermal titration calorimetry. NMR analysis of the c-IAP1 UBA domain-ubiquitin interaction reveals that this UBA domain binds the classical hydrophobic patch surrounding Ile(44) of ubiquitin. Mutations of critical amino acid residues in the highly conserved MGF (Met-Gly-Phe) binding loop of the UBA domain completely abrogate ubiquitin binding. These mutations in the UBA domain do not overtly affect the ubiquitin ligase activity of c-IAP1 or the participation of c-IAP1 and c-IAP2 in the TNFR1 signalling complex. Treatment of cells with IAP antagonists leads to proteasomal degradation of c-IAP1 and c-IAP2. Deletion or mutation of the UBA domain decreases this degradation, probably by diminishing the interaction of the c-IAPs with the proteasome. These results suggest that ubiquitin binding may be an important mechanism for rapid turnover of auto-ubiquitinated c-IAP1 and c-IAP2.


Molecular & Cellular Proteomics | 2011

Improved Quantitative Mass Spectrometry Methods for Characterizing Complex Ubiquitin Signals

Lilian Phu; Anita Izrael-Tomasevic; Marissa L. Matsumoto; Daisy Bustos; Jasmin N. Dynek; Anna V. Fedorova; Corey E. Bakalarski; David Arnott; Kurt Deshayes; Vishva M. Dixit; Robert F. Kelley; Domagoj Vucic; Donald S. Kirkpatrick

Ubiquitinated substrates can be recruited to macromolecular complexes through interactions between their covalently bound ubiquitin (Ub) signals and Ub receptor proteins. To develop a functional understanding of the Ub system in vivo, methods are needed to determine the composition of Ub signals on individual substrates and in protein mixtures. Mass spectrometry has emerged as an important tool for characterizing the various forms of Ub. In the Ubiquitin-AQUA approach, synthetic isotopically labeled internal standard peptides are used to quantify unbranched peptides and the branched -GG signature peptides generated by trypsin digestion of Ub signals. Here we have built upon existing methods and established a comprehensive platform for the characterization of Ub signals. Digested peptides and isotopically labeled standards are analyzed either by selected reaction monitoring on a QTRAP mass spectrometer or by narrow window extracted ion chromatograms on a high resolution LTQ-Orbitrap. Additional peptides are now monitored to account for the N terminus of ubiquitin, linear polyUb chains, the peptides surrounding K33 and K48, and incomplete digestion products. Using this expanded battery of peptides, the total amount of Ub in a sample can be determined from multiple loci within the protein, minimizing possible confounding effects of complex Ub signals, digestion abnormalities, or use of mutant Ub in experiments. These methods have been useful for the characterization of in vitro, multistage ubiquitination and have now been extended to reactions catalyzed by multiple E2 enzymes. One question arising from in vitro studies is whether individual protein substrates in cells may be modified by multiple forms of polyUb. Here we have taken advantage of recently developed polyubiquitin linkage-specific antibodies recognizing K48- and K63-linked polyUb chains, coupled with these mass spectrometry methods, to further evaluate the abundance of mixed linkage Ub substrates in cultured mammalian cells. By combining these two powerful tools, we show that polyubiquitinated substrates purified from cells can be modified by mixtures of K48, K63, and K11 linkages.


Journal of Biological Chemistry | 2012

Furin-cleaved Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Is Active and Modulates Low Density Lipoprotein Receptor and Serum Cholesterol Levels

Michael T. Lipari; Wei Li; Paul Moran; Monica Kong-Beltran; Tao Sai; Joyce Lai; S. Jack Lin; Ganesh Kolumam; Jose Zavala-Solorio; Anita Izrael-Tomasevic; David Arnott; Jianyong Wang; Andrew S. Peterson; Daniel Kirchhofer

Background: Two forms of PCSK9, an intact and a furin cleaved form, circulate in blood. Results: Both forms, as highly purified recombinant proteins, are able to bind to and trigger degradation of LDL receptors and elevate serum cholesterol levels. Conclusion: Furin cleavage is not associated with a loss of PCSK9 polypeptides or a significant loss of function. Significance: LDL-c levels are controlled by both forms of PCSK9. Proprotein convertase subtilisin/kexin 9 (PCSK9) regulates plasma LDL cholesterol levels by regulating the degradation of LDL receptors. Another proprotein convertase, furin, cleaves PCSK9 at Arg218-Gln219 in the surface-exposed “218 loop.” This cleaved form circulates in blood along with the intact form, albeit at lower concentrations. To gain a better understanding of how cleavage affects PCSK9 function, we produced recombinant furin-cleaved PCSK9 using antibody Ab-3D5, which binds the intact but not the cleaved 218 loop. Using Ab-3D5, we also produced highly purified hepsin-cleaved PCSK9. Hepsin cleaves PCSK9 at Arg218-Gln219 more efficiently than furin but also cleaves at Arg215-Phe216. Further analysis by size exclusion chromatography and mass spectrometry indicated that furin and hepsin produced an internal cleavage in the 218 loop without the loss of the N-terminal segment (Ser153–Arg218), which remained attached to the catalytic domain. Both furin- and hepsin-cleaved PCSK9 bound to LDL receptor with only 2-fold reduced affinity compared with intact PCSK9. Moreover, they reduced LDL receptor levels in HepG2 cells and in mouse liver with only moderately lower activity than intact PCSK9, consistent with the binding data. Single injection into mice of furin-cleaved PCSK9 resulted in significantly increased serum cholesterol levels, approaching the increase by intact PCSK9. These findings indicate that circulating furin-cleaved PCSK9 is able to regulate LDL receptor and serum cholesterol levels, although somewhat less efficiently than intact PCSK9. Therapeutic anti-PCSK9 approaches that neutralize both forms should be the most effective in preserving LDL receptors and in lowering plasma LDL cholesterol.


Journal of Immunology | 2009

B and T Lymphocyte Attenuator Regulates B Cell Receptor Signaling by Targeting Syk and BLNK

Andrew C. Vendel; Jill Calemine-Fenaux; Anita Izrael-Tomasevic; Vandana Chauhan; David Arnott; Dan L. Eaton

B and T lymphocyte attenuator (BTLA) functions as a negative regulator of T cell activation and proliferation. Although the role of BTLA in regulating T cell responses has been characterized, a thorough investigation into the precise molecular mechanisms involved in BTLA-mediated lymphocyte attenuation and, more specifically, its role in regulating B cell activation has not been presented. In this study, we have begun to elucidate the biochemical mechanisms by which BTLA functions to inhibit B cell activation. We describe the cell surface expression of BTLA on various human B cell subsets and confirm its ability to attenuate B cell proliferation upon associating with its known ligand, herpesvirus entry mediator (HVEM). BTLA associates with the BCR and, upon binding to HVEM, recruits the tyrosine phosphatase Src homology 2 domain-containing phosphatase 1 and reduces activation of signaling molecules downstream of the BCR. This is exemplified by a quantifiable decrease in tyrosine phosphorylation of the protein tyrosine kinase Syk, as measured by absolute quantification mass spectrometry. Furthermore, effector molecules downstream of BCR signaling, including the B cell linker protein, phospholipase Cγ2, and NF-κB, display decreased activation and nuclear translocation, respectively, after BTLA activation by HVEM. These results begin to provide insight into the mechanism by which BTLA negatively regulates B cell activation and indicates that BTLA is an inhibitory coreceptor of the BCR signaling pathway and attenuates B cell activation by targeting the downstream signaling molecules Syk and B cell linker protein.


The EMBO Journal | 2013

OTUB1 modulates c‐IAP1 stability to regulate signalling pathways

Tatiana Goncharov; Kyle Niessen; Maria Cristina de Almagro; Anita Izrael-Tomasevic; Anna V. Fedorova; Eugene Varfolomeev; David Arnott; Kurt Deshayes; Donald S. Kirkpatrick; Domagoj Vucic

The cellular inhibitor of apoptosis (c‐IAP) proteins are E3 ubiquitin ligases that are critical regulators of tumour necrosis factor (TNF) receptor (TNFR)‐mediated signalling. Through their E3 ligase activity c‐IAP proteins promote ubiquitination of receptor‐interaction protein 1 (RIP1), NF‐κB‐inducing kinase (NIK) and themselves, and regulate the assembly of TNFR signalling complexes. Consequently, in the absence of c‐IAP proteins, TNFR‐mediated activation of NF‐κB and MAPK pathways and the induction of gene expression are severely reduced. Here, we describe the identification of OTUB1 as a c‐IAP‐associated deubiquitinating enzyme that regulates c‐IAP1 stability. OTUB1 disassembles K48‐linked polyubiquitin chains from c‐IAP1 in vitro and in vivo within the TWEAK receptor‐signalling complex. Downregulation of OTUB1 promotes TWEAK‐ and IAP antagonist‐stimulated caspase activation and cell death, and enhances c‐IAP1 degradation. Furthermore, knockdown of OTUB1 reduces TWEAK‐induced activation of canonical NF‐κB and MAPK signalling pathways and modulates TWEAK‐induced gene expression. Finally, suppression of OTUB1 expression in zebrafish destabilizes c‐IAP (Birc2) protein levels and disrupts fish vasculature. These results suggest that OTUB1 regulates NF‐κB and MAPK signalling pathways and TNF‐dependent cell death by modulating c‐IAP1 stability.


Journal of Experimental Medicine | 2016

NLRP3 recruitment by NLRC4 during Salmonella infection.

Yan Qu; Shahram Misaghi; Kim Newton; Allie Maltzman; Anita Izrael-Tomasevic; David Arnott; Vishva M. Dixit

By engineering a mutant mouse strain that preserves the scaffolding function of NLRC4, Dixit et al. show cooperativity between it and another NOD family sensor, NLRP3.


Molecular & Cellular Proteomics | 2015

Mass Spectrometric Quantification of Histone Post-translational Modifications by a Hybrid Chemical Labeling Method

Tobias M. Maile; Anita Izrael-Tomasevic; Tommy K. Cheung; Gulfem D. Guler; Charles Tindell; Alexandre Masselot; Jun Liang; Feng Zhao; Patrick Trojer; Marie Classon; David Arnott

Mass spectrometry is a powerful alternative to antibody-based methods for the analysis of histone post-translational modifications (marks). A key development in this approach was the deliberate propionylation of histones to improve sequence coverage across the lysine-rich and hydrophilic tails that bear most modifications. Several marks continue to be problematic however, particularly di- and tri-methylated lysine 4 of histone H3 which we found to be subject to substantial and selective losses during sample preparation and liquid chromatography-mass spectrometry. We developed a new method employing a “one-pot” hybrid chemical derivatization of histones, whereby an initial conversion of free lysines to their propionylated forms under mild aqueous conditions is followed by trypsin digestion and labeling of new peptide N termini with phenyl isocyanate. High resolution mass spectrometry was used to collect qualitative and quantitative data, and a novel web-based software application (Fishtones) was developed for viewing and quantifying histone marks in the resulting data sets. Recoveries of 53 methyl, acetyl, and phosphoryl marks on histone H3.1 were improved by an average of threefold overall, and over 50-fold for H3K4 di- and tri-methyl marks. The power of this workflow for epigenetic research and drug discovery was demonstrated by measuring quantitative changes in H3K4 trimethylation induced by small molecule inhibitors of lysine demethylases and siRNA knockdown of epigenetic modifiers ASH2L and WDR5.

Collaboration


Dive into the Anita Izrael-Tomasevic's collaboration.

Researchain Logo
Decentralizing Knowledge