Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anita B. Hjelmeland is active.

Publication


Featured researches published by Anita B. Hjelmeland.


Nature | 2006

Glioma stem cells promote radioresistance by preferential activation of the DNA damage response

Shideng Bao; Qiulian Wu; Roger E. McLendon; Yueling Hao; Qing Shi; Anita B. Hjelmeland; Mark W. Dewhirst; Darell D. Bigner; Jeremy N. Rich

Ionizing radiation represents the most effective therapy for glioblastoma (World Health Organization grade IV glioma), one of the most lethal human malignancies, but radiotherapy remains only palliative because of radioresistance. The mechanisms underlying tumour radioresistance have remained elusive. Here we show that cancer stem cells contribute to glioma radioresistance through preferential activation of the DNA damage checkpoint response and an increase in DNA repair capacity. The fraction of tumour cells expressing CD133 (Prominin-1), a marker for both neural stem cells and brain cancer stem cells, is enriched after radiation in gliomas. In both cell culture and the brains of immunocompromised mice, CD133-expressing glioma cells survive ionizing radiation in increased proportions relative to most tumour cells, which lack CD133. CD133-expressing tumour cells isolated from both human glioma xenografts and primary patient glioblastoma specimens preferentially activate the DNA damage checkpoint in response to radiation, and repair radiation-induced DNA damage more effectively than CD133-negative tumour cells. In addition, the radioresistance of CD133-positive glioma stem cells can be reversed with a specific inhibitor of the Chk1 and Chk2 checkpoint kinases. Our results suggest that CD133-positive tumour cells represent the cellular population that confers glioma radioresistance and could be the source of tumour recurrence after radiation. Targeting DNA damage checkpoint response in cancer stem cells may overcome this radioresistance and provide a therapeutic model for malignant brain cancers.


Cancer Research | 2006

Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor.

Shideng Bao; Qiulian Wu; Sith Sathornsumetee; Yueling Hao; Zhizhong Li; Anita B. Hjelmeland; Qing Shi; Roger E. McLendon; Darell D. Bigner; Jeremy N. Rich

Malignant gliomas are highly lethal cancers dependent on angiogenesis. Critical tumor subpopulations within gliomas share characteristics with neural stem cells. We examined the potential of stem cell-like glioma cells (SCLGC) to support tumor angiogenesis. SCLGC isolated from human glioblastoma biopsy specimens and xenografts potently generated tumors when implanted into the brains of immunocompromised mice, whereas non-SCLGC tumor cells isolated from only a few tumors formed secondary tumors when xenotransplanted. Tumors derived from SCLGC were morphologically distinguishable from non-SCLGC tumor populations by widespread tumor angiogenesis, necrosis, and hemorrhage. To determine a potential molecular mechanism for SCLGC in angiogenesis, we measured the expression of a panel of angiogenic factors secreted by SCLGC. In comparison with matched non-SCLGC populations, SCLGC consistently secreted markedly elevated levels of vascular endothelial growth factor (VEGF), which were further induced by hypoxia. In an in vitro model of angiogenesis, SCLGC-conditioned medium significantly increased endothelial cell migration and tube formation compared with non-SCLGC tumor cell-conditioned medium. The proangiogenic effects of glioma SCLGC on endothelial cells were specifically abolished by the anti-VEGF neutralizing antibody bevacizumab, which is in clinical use for cancer therapy. Furthermore, bevacizumab displayed potent antiangiogenic efficacy in vivo and suppressed growth of xenografts derived from SCLGC but limited efficacy against xenografts derived from a matched non-SCLGC population. Together these data indicate that stem cell-like tumor cells can be a crucial source of key angiogenic factors in cancers and that targeting proangiogenic factors from stem cell-like tumor populations may be critical for patient therapy.


Cancer Cell | 2009

Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells

Zhizhong Li; Shideng Bao; Qiulian Wu; Hui Wang; Christine E. Eyler; Sith Sathornsumetee; Qing Shi; Yiting Cao; Justin D. Lathia; Roger E. McLendon; Anita B. Hjelmeland; Jeremy N. Rich

Glioblastomas are lethal cancers characterized by florid angiogenesis promoted in part by glioma stem cells (GSCs). Because hypoxia regulates angiogenesis, we examined hypoxic responses in GSCs. We now demonstrate that hypoxia-inducible factor HIF2alpha and multiple HIF-regulated genes are preferentially expressed in GSCs in comparison to non-stem tumor cells and normal neural progenitors. In tumor specimens, HIF2alpha colocalizes with cancer stem cell markers. Targeting HIFs in GSCs inhibits self-renewal, proliferation, and survival in vitro, and attenuates tumor initiation potential of GSCs in vivo. Analysis of a molecular database reveals that HIF2A expression correlates with poor glioma patient survival. Our results demonstrate that GSCs differentially respond to hypoxia with distinct HIF induction patterns, and HIF2alpha might represent a promising target for antiglioblastoma therapies.


Cancer Research | 2008

Targeting cancer stem cells through L1CAM suppresses glioma growth

Shideng Bao; Qiulian Wu; Zhizhong Li; Sith Sathornsumetee; Hui Wang; Roger E. McLendon; Anita B. Hjelmeland; Jeremy N. Rich

Malignant gliomas are lethal cancers that display striking cellular heterogeneity. A highly tumorigenic glioma tumor subpopulation, termed cancer stem cells or tumor-initiating cells, promotes therapeutic resistance and tumor angiogenesis. Therefore, targeting cancer stem cells may improve patient survival. We interrogated the role of a neuronal cell adhesion molecule, L1CAM, in glioma stem cells as L1CAM regulates brain development and is expressed in gliomas. L1CAM(+) and CD133(+) cells cosegregated in gliomas, and levels of L1CAM were higher in CD133(+) glioma cells than normal neural progenitors. Targeting L1CAM using lentiviral-mediated short hairpin RNA (shRNA) interference in CD133(+) glioma cells potently disrupted neurosphere formation, induced apoptosis, and inhibited growth specifically in glioma stem cells. We identified a novel mechanism for L1CAM regulation of cell survival as L1CAM knockdown decreased expression of the basic helix-loop-helix transcription factor Olig2 and up-regulated the p21(WAF1/CIP1) tumor suppressor in CD133(+) glioma cells. To determine if targeting L1CAM was sufficient to reduce glioma stem cell tumor growth in vivo, we targeted L1CAM in glioma cells before injection into immunocompromised mice or directly in established tumors. In each glioma xenograft model, shRNA targeting of L1CAM expression in vivo suppressed tumor growth and increased the survival of tumor-bearing animals. Together, these data show that L1CAM is required for maintaining the growth and survival of CD133(+) glioma cells both in vitro and in vivo, and L1CAM may represent a cancer stem cell-specific therapeutic target for improving the treatment of malignant gliomas and other brain tumors.


PLOS ONE | 2008

c-Myc Is Required for Maintenance of Glioma Cancer Stem Cells

Jialiang Wang; Hui Wang; Zhizhong Li; Qiulian Wu; Justin D. Lathia; Roger E. McLendon; Anita B. Hjelmeland; Jeremy N. Rich

Background Malignant gliomas rank among the most lethal cancers. Gliomas display a striking cellular heterogeneity with a hierarchy of differentiation states. Recent studies support the existence of cancer stem cells in gliomas that are functionally defined by their capacity for extensive self-renewal and formation of secondary tumors that phenocopy the original tumors. As the c-Myc oncoprotein has recognized roles in normal stem cell biology, we hypothesized that c-Myc may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells. Methodology/Principal Findings Based on previous methods that we and others have employed, tumor cell populations were enriched or depleted for cancer stem cells using the stem cell marker CD133 (Prominin-1). We characterized c-Myc expression in matched tumor cell populations using real time PCR, immunoblotting, immunofluorescence and flow cytometry. Here we report that c-Myc is highly expressed in glioma cancer stem cells relative to non-stem glioma cells. To interrogate the significance of c-Myc expression in glioma cancer stem cells, we targeted its expression using lentivirally transduced short hairpin RNA (shRNA). Knockdown of c-Myc in glioma cancer stem cells reduced proliferation with concomitant cell cycle arrest in the G0/G1 phase and increased apoptosis. Non-stem glioma cells displayed limited dependence on c-Myc expression for survival and proliferation. Further, glioma cancer stem cells with decreased c-Myc levels failed to form neurospheres in vitro or tumors when xenotransplanted into the brains of immunocompromised mice. Conclusions/Significance These findings support a central role of c-Myc in regulating proliferation and survival of glioma cancer stem cells. Targeting core stem cell pathways may offer improved therapeutic approaches for advanced cancers.


Stem Cells | 2008

Brain cancer stem cells display preferential sensitivity to Akt inhibition.

Christine E. Eyler; Wen-Chi Foo; Katherine M. LaFiura; Roger E. McLendon; Anita B. Hjelmeland; Jeremy N. Rich

Malignant brain tumors are among the most lethal cancers, and conventional therapies are largely limited to palliation. Novel therapies targeted against specific molecular pathways may offer superior efficacy and less toxicity than conventional therapies, but initial clinical trials of molecular targeted agents in brain cancer therapy have been frequently disappointing. In brain tumors and other cancers, subpopulations of tumor cells have recently been characterized by their ability to self‐renew and initiate tumors. Although these cancer stem cells, or tumor initiating cells, are often only present in small numbers in human tumors, mounting evidence suggests that cancer stem cells contribute to tumor maintenance and therapeutic resistance. Thus, the development of therapies that target cancer stem cell signal transduction and biology may improve brain tumor patient survival. We now demonstrate that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node. Treatment with an Akt inhibitor more potently reduced the numbers of viable brain cancer stem cells relative to matched nonstem cancer cells associated with a preferential induction of apoptosis and a suppression of neurosphere formation. Akt inhibition also reduced the motility and invasiveness of all tumor cells but had a greater impact on cancer stem cell behaviors. Furthermore, inhibition of Akt activity in cancer stem cells increased the survival of immunocompromised mice bearing human glioma xenografts in vivo. Together, these results suggest that Akt inhibitors may function as effective anticancer stem cell therapies.


Molecular Carcinogenesis | 2007

A Novel Low-Molecular Weight Inhibitor of Focal Adhesion Kinase, TAE226, Inhibits Glioma Growth

Qing Shi; Anita B. Hjelmeland; Stephen T. Keir; Linhua Song; Sarah Wickman; Dowdy Jackson; Osamu Ohmori; Darell D. Bigner; Henry S. Friedman; Jeremy N. Rich

Glioblastomas are highly lethal cancers that resist current therapies. Novel therapies under development target molecular mechanisms that promote glioblastoma growth. In glioblastoma patient specimens, the non‐receptor tyrosine kinase focal adhesion kinase (FAK) is overexpressed. Upon growth factor receptor stimulation or integrin engagement, FAK is activated by phosphorylation on critical tyrosine residues. Activated FAK initiates a signal transduction cascade which promotes glioma growth and invasion by increasing cellular adhesion, migration, invasion, and proliferation. We find that human glioma cell lines express different levels of total FAK protein and activating phosphorylation of tyrosine residues Tyr397, Tyr861, and Tyr925. As all glioma cell lines examined expressed phosphorylated FAK, we examined the efficacy of a novel low‐molecular weight inhibitor of FAK, TAE226, against human glioma cell lines. TAE226 inhibited the phosphorylation of FAK as well as the downstream effectors AKT, extracellular signal‐related kinase, and S6 ribosomal protein in multiple glioma cell lines. TAE226 induced a concentration‐dependent decrease in cellular proliferation with an associated G2 cell cycle arrest in every cell line and an increase in apoptosis in a cell‐line‐specific manner. TAE226 also decreased glioma cell adhesion, migration, and invasion through an artificial extracellular matrix. Together, these data demonstrate the potential benefit of TAE226 for glioma therapy.


Oncogene | 2007

Targeting SPARC expression decreases glioma cellular survival and invasion associated with reduced activities of FAK and ILK kinases.

Qun Shi; Shideng Bao; L Song; Qiulian Wu; Darell D. Bigner; Anita B. Hjelmeland; Jeremy N. Rich

Secreted protein acidic and rich in cysteine (SPARC) is an extracellular glycoprotein expressed in several solid cancers, including malignant gliomas, upon adoption of metastatic or invasive behaviors. SPARC expression in glioma cells promotes invasion and survival under stress, the latter process dependent on SPARC activation of AKT. Here we demonstrate that downregulation of SPARC expression with short interfering RNA (siRNA) in glioma cells decreased tumor cell survival and invasion. SPARC siRNA reduced the activating phosphorylation of AKT and two cytoplasmic kinases, focal adhesion kinase (FAK) and integrin-linked kinase (ILK). We determined the contributions of FAK and ILK to SPARC effects using SPARC protein and cell lines engineered to overexpress SPARC. SPARC activated FAK and ILK in glioma cells previously characterized as responsive to SPARC. Downregulation of either FAK or ILK expression inhibited SPARC-mediated AKT phosphorylation, and targeting both FAK and ILK attenuated AKT activation more potently than targeting either FAK or ILK alone. Decreased SPARC-mediated AKT activation correlated with a reduction in SPARC-dependent invasion and survival upon the downregulation of FAK and/or ILK expression. These data further demonstrate the role of SPARC in glioma tumor progression through the activation of intracellular kinases that may provide novel therapeutic targets for advanced cancers.


Cancer Research | 2006

AAL881, a novel small molecule inhibitor of RAF and vascular endothelial growth factor receptor activities, blocks the growth of malignant glioma.

Sith Sathornsumetee; Anita B. Hjelmeland; Stephen T. Keir; Roger E. McLendon; David Bryant Batt; Timothy Michael Ramsey; Naeem Yusuff; B. Ahmed Rasheed; Mark W. Kieran; Andrea Laforme; Darell D. Bigner; Henry S. Friedman; Jeremy N. Rich

Malignant gliomas are highly proliferative and angiogenic cancers resistant to conventional therapies. Although RAS and RAF mutations are uncommon in gliomas, RAS activity is increased in gliomas. Additionally, vascular endothelial growth factor and its cognate receptors are highly expressed in gliomas. We now report that AAL881, a novel low-molecular weight inhibitor of the kinase activities associated with B-RAF, C-RAF (RAF-1), and VEGF receptor-2 (VEGFR2), showed activity against glioma cell lines and xenografts. In culture, AAL881 inhibited the downstream effectors of RAF in a concentration-dependent manner, with inhibition of proliferation associated with a G(1) cell cycle arrest, induction of apoptosis, and decreased colony formation. AAL881 decreased the proliferation of bovine aortic endothelial cells as well as the tumor cell secretion of vascular endothelial growth factor and inhibited the invasion of glioma cells through an artificial extracellular matrix. Orally administered AAL881 was well tolerated with minimal weight loss in non-tumor-bearing mice. Established s.c. human malignant glioma xenografts grown in immunocompromised mice treated with a 10-day course of oral AAL881 exhibited growth delays relative to control tumors, frequently resulting in long-term complete regressions. AAL881 treatment extended the survival of immunocompromised mice bearing orthotopic glioma xenografts compared with placebo controls. The intraparenchymal portions of orthotopic AAL881-treated tumors underwent widespread necrosis consistent with vascular disruption compared with the subarachnoid elements. These effects are distinct from our prior experience with VEGFR2 inhibitors, suggesting that targeting RAF itself or in combination with VEGFR2 induces profound tumor responses in gliomas and may serve as a novel therapeutic approach in patients with malignant gliomas.


Molecular Cancer Therapeutics | 2007

The combination of novel low molecular weight inhibitors of RAF (LBT613) and target of rapamycin (RAD001) decreases glioma proliferation and invasion

Anita B. Hjelmeland; Kathryn P. Lattimore; Brian E. Fee; Qing Shi; Sarah Wickman; Stephen T. Keir; Mark D. Hjelmeland; David Bryant Batt; Darell D. Bigner; Henry S. Friedman; Jeremy N. Rich

Monotherapies have proven largely ineffective for the treatment of glioblastomas, suggesting that increased patient benefit may be achieved by combining therapies. Two protumorigenic pathways known to be active in glioblastoma include RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/AKT/target of rapamycin (TOR). We investigated the efficacy of a combination of novel low molecular weight inhibitors LBT613 and RAD001 (everolimus), which were designed to target RAF and TOR, respectively. LBT613 decreased phosphorylation of extracellular signal-regulated kinase 1 and 2, downstream effectors of RAF, in a human glioma cell line. RAD001 resulted in decreased phosphorylation of the TOR effector S6. To determine if targeting RAF and TOR activities could result in decreased protumorigenic glioma cellular behaviors, we evaluated the abilities of LBT613 and RAD001 to affect the proliferation, migration, and invasion of human glioma cells. Treatment with either LBT613 or RAD001 alone significantly decreased the proliferation of multiple human glioma cell lines. Furthermore, LBT613 and RAD001 in combination synergized to decrease glioma cell proliferation in association with G1 cell cycle arrest. Glioma invasion is a critical contributor to tumor malignancy. The combination of LBT613 and RAD001 inhibited the invasion of human glioma cells through Matrigel to a greater degree than treatment with either drug alone. These data suggest that the combination of LBT613 and RAD001 reduces glioma cell proliferation and invasion and support examination of the combination of RAF and TOR inhibitors for the treatment of human glioblastoma patients. [Mol Cancer Ther 2007;6(9):2449–57]

Collaboration


Dive into the Anita B. Hjelmeland's collaboration.

Top Co-Authors

Avatar

Jeremy N. Rich

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shideng Bao

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge