Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shideng Bao is active.

Publication


Featured researches published by Shideng Bao.


Nature | 2006

Glioma stem cells promote radioresistance by preferential activation of the DNA damage response

Shideng Bao; Qiulian Wu; Roger E. McLendon; Yueling Hao; Qing Shi; Anita B. Hjelmeland; Mark W. Dewhirst; Darell D. Bigner; Jeremy N. Rich

Ionizing radiation represents the most effective therapy for glioblastoma (World Health Organization grade IV glioma), one of the most lethal human malignancies, but radiotherapy remains only palliative because of radioresistance. The mechanisms underlying tumour radioresistance have remained elusive. Here we show that cancer stem cells contribute to glioma radioresistance through preferential activation of the DNA damage checkpoint response and an increase in DNA repair capacity. The fraction of tumour cells expressing CD133 (Prominin-1), a marker for both neural stem cells and brain cancer stem cells, is enriched after radiation in gliomas. In both cell culture and the brains of immunocompromised mice, CD133-expressing glioma cells survive ionizing radiation in increased proportions relative to most tumour cells, which lack CD133. CD133-expressing tumour cells isolated from both human glioma xenografts and primary patient glioblastoma specimens preferentially activate the DNA damage checkpoint in response to radiation, and repair radiation-induced DNA damage more effectively than CD133-negative tumour cells. In addition, the radioresistance of CD133-positive glioma stem cells can be reversed with a specific inhibitor of the Chk1 and Chk2 checkpoint kinases. Our results suggest that CD133-positive tumour cells represent the cellular population that confers glioma radioresistance and could be the source of tumour recurrence after radiation. Targeting DNA damage checkpoint response in cancer stem cells may overcome this radioresistance and provide a therapeutic model for malignant brain cancers.


Cancer Research | 2006

Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor.

Shideng Bao; Qiulian Wu; Sith Sathornsumetee; Yueling Hao; Zhizhong Li; Anita B. Hjelmeland; Qing Shi; Roger E. McLendon; Darell D. Bigner; Jeremy N. Rich

Malignant gliomas are highly lethal cancers dependent on angiogenesis. Critical tumor subpopulations within gliomas share characteristics with neural stem cells. We examined the potential of stem cell-like glioma cells (SCLGC) to support tumor angiogenesis. SCLGC isolated from human glioblastoma biopsy specimens and xenografts potently generated tumors when implanted into the brains of immunocompromised mice, whereas non-SCLGC tumor cells isolated from only a few tumors formed secondary tumors when xenotransplanted. Tumors derived from SCLGC were morphologically distinguishable from non-SCLGC tumor populations by widespread tumor angiogenesis, necrosis, and hemorrhage. To determine a potential molecular mechanism for SCLGC in angiogenesis, we measured the expression of a panel of angiogenic factors secreted by SCLGC. In comparison with matched non-SCLGC populations, SCLGC consistently secreted markedly elevated levels of vascular endothelial growth factor (VEGF), which were further induced by hypoxia. In an in vitro model of angiogenesis, SCLGC-conditioned medium significantly increased endothelial cell migration and tube formation compared with non-SCLGC tumor cell-conditioned medium. The proangiogenic effects of glioma SCLGC on endothelial cells were specifically abolished by the anti-VEGF neutralizing antibody bevacizumab, which is in clinical use for cancer therapy. Furthermore, bevacizumab displayed potent antiangiogenic efficacy in vivo and suppressed growth of xenografts derived from SCLGC but limited efficacy against xenografts derived from a matched non-SCLGC population. Together these data indicate that stem cell-like tumor cells can be a crucial source of key angiogenic factors in cancers and that targeting proangiogenic factors from stem cell-like tumor populations may be critical for patient therapy.


Cancer Cell | 2009

Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells

Zhizhong Li; Shideng Bao; Qiulian Wu; Hui Wang; Christine E. Eyler; Sith Sathornsumetee; Qing Shi; Yiting Cao; Justin D. Lathia; Roger E. McLendon; Anita B. Hjelmeland; Jeremy N. Rich

Glioblastomas are lethal cancers characterized by florid angiogenesis promoted in part by glioma stem cells (GSCs). Because hypoxia regulates angiogenesis, we examined hypoxic responses in GSCs. We now demonstrate that hypoxia-inducible factor HIF2alpha and multiple HIF-regulated genes are preferentially expressed in GSCs in comparison to non-stem tumor cells and normal neural progenitors. In tumor specimens, HIF2alpha colocalizes with cancer stem cell markers. Targeting HIFs in GSCs inhibits self-renewal, proliferation, and survival in vitro, and attenuates tumor initiation potential of GSCs in vivo. Analysis of a molecular database reveals that HIF2A expression correlates with poor glioma patient survival. Our results demonstrate that GSCs differentially respond to hypoxia with distinct HIF induction patterns, and HIF2alpha might represent a promising target for antiglioblastoma therapies.


Cancer Cell | 2004

Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway

Shideng Bao; Gaoliang Ouyang; Xuefang Bai; Zhi Huang; Chaoyu Ma; Ming Liu; Rong Shao; Ryan M. Anderson; Jeremy N. Rich; Xiao-Fan Wang

Molecular mechanisms associated with tumor metastasis remain poorly understood. Here we report that acquired expression of periostin by colon cancer cells greatly promoted metastatic development of colon tumors. Periostin is overexpressed in more than 80% of human colon cancers examined with highest expression in metastatic tumors. Periostin expression dramatically enhanced metastatic growth of colon cancer by both preventing stress-induced apoptosis in the cancer cells and augmenting endothelial cell survival to promote angiogenesis. At the molecular level, periostin activated the Akt/PKB signaling pathway through the alpha(v)beta(3) integrins to increase cellular survival. These data demonstrated that the survival-promoting function is crucial for periostin to promote tumor metastasis of colon cancer.


Cancer Research | 2008

Targeting cancer stem cells through L1CAM suppresses glioma growth

Shideng Bao; Qiulian Wu; Zhizhong Li; Sith Sathornsumetee; Hui Wang; Roger E. McLendon; Anita B. Hjelmeland; Jeremy N. Rich

Malignant gliomas are lethal cancers that display striking cellular heterogeneity. A highly tumorigenic glioma tumor subpopulation, termed cancer stem cells or tumor-initiating cells, promotes therapeutic resistance and tumor angiogenesis. Therefore, targeting cancer stem cells may improve patient survival. We interrogated the role of a neuronal cell adhesion molecule, L1CAM, in glioma stem cells as L1CAM regulates brain development and is expressed in gliomas. L1CAM(+) and CD133(+) cells cosegregated in gliomas, and levels of L1CAM were higher in CD133(+) glioma cells than normal neural progenitors. Targeting L1CAM using lentiviral-mediated short hairpin RNA (shRNA) interference in CD133(+) glioma cells potently disrupted neurosphere formation, induced apoptosis, and inhibited growth specifically in glioma stem cells. We identified a novel mechanism for L1CAM regulation of cell survival as L1CAM knockdown decreased expression of the basic helix-loop-helix transcription factor Olig2 and up-regulated the p21(WAF1/CIP1) tumor suppressor in CD133(+) glioma cells. To determine if targeting L1CAM was sufficient to reduce glioma stem cell tumor growth in vivo, we targeted L1CAM in glioma cells before injection into immunocompromised mice or directly in established tumors. In each glioma xenograft model, shRNA targeting of L1CAM expression in vivo suppressed tumor growth and increased the survival of tumor-bearing animals. Together, these data show that L1CAM is required for maintaining the growth and survival of CD133(+) glioma cells both in vitro and in vivo, and L1CAM may represent a cancer stem cell-specific therapeutic target for improving the treatment of malignant gliomas and other brain tumors.


British Journal of Cancer | 2010

Hypoxia inducible factors in cancer stem cells

John M. Heddleston; Z Li; Justin D. Lathia; Shideng Bao; Anita B. Hjelmeland; Jeremy N. Rich

Oxygen is an essential regulator of cellular metabolism, survival, and proliferation. Cellular responses to oxygen levels are monitored, in part, by the transcriptional activity of the hypoxia inducible factors (HIFs). Under hypoxia, HIFs regulate a variety of pro-angiogenic and pro-glycolysis pathways. In solid cancers, regions of hypoxia are commonly present throughout the tissue because of the chaotic vascular architecture and regions of necrosis. In these regions, the hypoxic state fluctuates in a spatial and temporal manner. Transient hypoxic cycling causes an increase in the activity of the HIF proteins above what is typical for non-pathologic tissue. The extent of hypoxia strongly correlates to poor patient survival, therapeutic resistance and an aggressive tumour phenotype, but the full contribution of hypoxia and the HIFs to tumour biology is an area of active investigation. Recent reports link resistance to conventional therapies and the metastatic potential to a stem-like tumour population, termed cancer stem cells (CSCs). We and others have shown that within brain tumours CSCs reside in two niches, a perivascular location and the surrounding necrotic tissue. Restricted oxygen conditions increase the CSC fraction and promote acquisition of a stem-like state. Cancer stem cells are critically dependant on the HIFs for survival, self-renewal, and tumour growth. These observations and those from normal stem cell biology provide a new mechanistic explanation for the contribution of hypoxia to malignancy. Further, the presence of hypoxia in tumours may present challenges for therapy because of the promotion of CSC phenotypes even upon successful killing of CSCs. The current experimental evidence suggests that CSCs are plastic cell states governed by microenvironmental conditions, such as hypoxia, that may be critical for the development of new therapies targeted to disrupt the microenvironment.


Nature | 2001

ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses.

Shideng Bao; Randal S. Tibbetts; Kathryn M. Brumbaugh; Yi Fang; D. A. Richardson; A. Ali; Sheri Chen; Robert T. Abraham; Xiao-Fan Wang

Genotoxic stress triggers the activation of checkpoints that delay cell-cycle progression to allow for DNA repair. Studies in fission yeast implicate members of the Rad family of checkpoint proteins, which includes Rad17, Rad1, Rad9 and Hus1, as key early-response elements during the activation of both the DNA damage and replication checkpoints. Here we demonstrate a direct regulatory linkage between the human Rad17 homologue (hRad17) and the checkpoint kinases, ATM and ATR. Treatment of human cells with genotoxic agents induced ATM/ATR-dependent phosphorylation of hRad17 at Ser 635 and Ser 645. Overexpression of a hRad17 mutant (hRad17AA) bearing Ala substitutions at both phosphorylation sites abrogated the DNA-damage-induced G2 checkpoint, and sensitized human fibroblasts to genotoxic stress. In contrast to wild-type hRad17, the hRad17AA mutant showed no ionizing-radiation-inducible association with hRad1, a component of the hRad1–hRad9–hHus1 checkpoint complex. These findings demonstrate that ATR/ATM-dependent phosphorylation of hRad17 is a critical early event during checkpoint signalling in DNA-damaged cells.


Molecular and Cellular Biology | 2004

Acquired Expression of Periostin by Human Breast Cancers Promotes Tumor Angiogenesis through Up-Regulation of Vascular Endothelial Growth Factor Receptor 2 Expression

Rong Shao; Shideng Bao; Xuefang Bai; Carrie Blanchette; Ryan M. Anderson; Tongyun Dang; Mikhail L. Gishizky; Jeffrey R. Marks; Xiao-Fan Wang

ABSTRACT The late stages of human breast cancer development are poorly understood complex processes associated with the expression of genes by cancers that promote specific tumorigenic activities, such as angiogenesis. Here, we describe the identification of periostin as a mesenchyme-specific gene whose acquired expression by human breast cancers leads to a significant enhancement in tumor progression and angiogenesis. Undetectable in normal human breast tissues, periostin was found to be overexpressed by the vast majority of human primary breast cancers examined. Tumor cell lines engineered to overexpress periostin showed a phenotype of accelerated growth and angiogenesis as xenografts in immunocompromised animals. The underlying mechanism of periostin-mediated induction of angiogenesis was found to derive in part from the up-regulation of the vascular endothelial growth factor receptor Flk-1/KDR by endothelial cells through an integrin αvβ3-focal adhesion kinase-mediated signaling pathway. These findings demonstrate the presence of a novel mechanism by which tumor angiogenesis is acquired with the expression of a mesenchyme-specific gene as a crucial step in late stages of tumorigenesis.


Cellular and Molecular Life Sciences | 2009

The multifaceted role of periostin in tumorigenesis

Kai Ruan; Shideng Bao; Gaoliang Ouyang

Periostin, also called osteoblast-specific factor 2 (OSF-2), is a member of the fasciclin family and a disulfide-linked cell adhesion protein that has been shown to be expressed preferentially in the periosteum and periodontal ligaments, where it acts as a critical regulator of bone and tooth formation and maintenance. Furthermore, periostin plays an important role in cardiac development. Recent clinical evidence has also revealed that periostin is involved in the development of various tumors, such as breast, lung, colon, pancreatic, and ovarian cancers. Periostin interacts with multiple cell-surface receptors, most notably integrins, and signals mainly via the PI3-K/Akt and other pathways to promote cancer cell survival, epithelial–mesenchymal transition (EMT), invasion, and metastasis. In this review, aspects related to the function of periostin in tumorigenesis are summarized.


Nature Cell Biology | 2015

Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth

Wenchao Zhou; Susan Q. Ke; Zhi Huang; William A. Flavahan; Xiaoguang Fang; Jeremy Paul; Ling Wu; Andrew E. Sloan; Roger E. McLendon; Xiaoxia Li; Jeremy N. Rich; Shideng Bao

Tumour-associated macrophages (TAMs) are enriched in glioblastoma multiformes (GBMs) that contain glioma stem cells (GSCs) at the apex of their cellular hierarchy. The correlation between TAM density and glioma grade suggests a supportive role for TAMs in tumour progression. Here we interrogated the molecular link between GSCs and TAM recruitment in GBMs and demonstrated that GSCs secrete periostin (POSTN) to recruit TAMs. TAM density correlates with POSTN levels in human GBMs. Silencing POSTN in GSCs markedly reduced TAM density, inhibited tumour growth, and increased survival of mice bearing GSC-derived xenografts. We found that TAMs in GBMs are not brain-resident microglia, but mainly monocyte-derived macrophages from peripheral blood. Disrupting POSTN specifically attenuated the tumour-supportive M2 type of TAMs in xenografts. POSTN recruits TAMs through the integrin αvβ3 as blocking this signalling by an RGD peptide inhibited TAM recruitment. Our findings highlight the possibility of improving GBM treatment by targeting POSTN-mediated TAM recruitment.

Collaboration


Dive into the Shideng Bao's collaboration.

Top Co-Authors

Avatar

Jeremy N. Rich

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anita B. Hjelmeland

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Shi

Third Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge