Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anitha Ponnuswami is active.

Publication


Featured researches published by Anitha Ponnuswami.


Cancer Cell | 2013

Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas

Sebastian Bender; Yujie Tang; Anders M. Lindroth; Volker Hovestadt; David T. W. Jones; Marcel Kool; Marc Zapatka; Paul A. Northcott; Dominik Sturm; Wei Wang; Bernhard Radlwimmer; Jonas W. Højfeldt; Nathalene Truffaux; David Castel; Simone Schubert; Marina Ryzhova; Huriye Şeker-Cin; Jan Gronych; Pascal-David Johann; Sebastian Stark; Jochen Meyer; Till Milde; Martin U. Schuhmann; Martin Ebinger; Camelia Maria Monoranu; Anitha Ponnuswami; Spenser Chen; Chris Jones; Olaf Witt; V. Peter Collins

Two recurrent mutations, K27M and G34R/V, within histone variant H3.3 were recently identified in ∼50% of pHGGs. Both mutations define clinically and biologically distinct subgroups of pHGGs. Here, we provide further insight about the dominant-negative effect of K27M mutant H3.3, leading to a global reduction of the repressive histone mark H3K27me3. We demonstrate that this is caused by aberrant recruitment of the PRC2 complex to K27M mutant H3.3 and enzymatic inhibition of the H3K27me3-establishing methyltransferase EZH2. By performing chromatin immunoprecipitation followed by next-generation sequencing and whole-genome bisulfite sequencing in primary pHGGs, we show that reduced H3K27me3 levels and DNA hypomethylation act in concert to activate gene expression in K27M mutant pHGGs.


Nature Medicine | 2015

Functionally defined therapeutic targets in diffuse intrinsic pontine glioma

Catherine S. Grasso; Yujie Tang; Nathalene Truffaux; Noah Berlow; Lining Liu; Marie Anne Debily; Michael J. Quist; Lara E. Davis; Elaine C. Huang; Pamelyn Woo; Anitha Ponnuswami; Spenser Chen; Tessa Johung; Wenchao Sun; Mari Kogiso; Yuchen Du; Lin Qi; Yulun Huang; Marianne Hütt-Cabezas; Katherine E. Warren; Ludivine Le Dret; Paul S. Meltzer; Hua Mao; Martha Quezado; Dannis G. van Vuurden; Jinu Abraham; Maryam Fouladi; Matthew N. Svalina; Nicholas Wang; Cynthia Hawkins

Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNA-seq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi–histone deacetylase inhibitor panobinostat demonstrated therapeutic efficacy both in vitro and in DIPG orthotopic xenograft models. Combination testing of panobinostat and the histone demethylase inhibitor GSK-J4 revealed that the two had synergistic effects. Together, these data suggest a promising therapeutic strategy for DIPG.


Nature Medicine | 2014

Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition

Yujie Tang; Sharareh Gholamin; Simone Schubert; Minde Willardson; Alex G. Lee; Pratiti Bandopadhayay; Guillame Bergthold; Sabran Masoud; Brian Nguyen; Nujsaubnusi Vue; Brianna Balansay; Furong Yu; Sekyung Oh; Pamelyn Woo; Spenser Chen; Anitha Ponnuswami; Michelle Monje; Scott X. Atwood; Ramon J. Whitson; Siddhartha Mitra; Samuel H. Cheshier; Jun Qi; Rameen Beroukhim; Jean Y. Tang; Rob Wechsler-Reya; Anthony E. Oro; Brian A. Link; James E. Bradner; Yoon-Jae Cho

Hedgehog signaling drives oncogenesis in several cancers, and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened (SMO). However, resistance to Smoothened inhibitors occurs by genetic changes of Smoothened or other downstream Hedgehog components. Here we overcome these resistance mechanisms by modulating GLI transcription through inhibition of bromo and extra C-terminal (BET) bromodomain proteins. We show that BRD4 and other BET bromodomain proteins regulate GLI transcription downstream of SMO and suppressor of fused (SUFU), and chromatin immunoprecipitation studies reveal that BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites after treatment with JQ1, a small-molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM (genetically engineered mouse model)-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists. Altogether, our results reveal BET proteins as critical regulators of Hedgehog pathway transcriptional output and nominate BET bromodomain inhibitors as a strategy for treating Hedgehog-driven tumors with emerged or a priori resistance to Smoothened antagonists.


Science Translational Medicine | 2017

Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors

Sharareh Gholamin; Siddhartha Mitra; Abdullah H. Feroze; Jie Liu; Suzana Assad Kahn; Michael Zhang; Rogelio Esparza; Chase Richard; Vijay Ramaswamy; Marc Remke; Anne K. Volkmer; Stephen B. Willingham; Anitha Ponnuswami; Aaron McCarty; Patricia Lovelace; Theresa A. Storm; Simone Schubert; Gregor Hutter; Cyndhavi Narayanan; Pauline Chu; Eric Raabe; Griffith R. Harsh; Michael D. Taylor; Michelle Monje; Yoon Jae Cho; Ravi Majeti; Jens Peter Volkmer; Paul G. Fisher; Gerald A. Grant; Gary K. Steinberg

Anti-CD47 antibody is effective for treating malignant pediatric brain tumors without detectable toxicity in patient-derived xenograft models. Brain tumors, meet macrophages A protein called CD47 is often expressed on the surface of tumor cells, where it serves as a “don’t eat me” signal that blocks macrophages from attacking the tumor. To overcome this signal and allow the macrophages to “eat” tumor cells, Gholamin et al. engineered a humanized antibody that blocks CD47 signaling. The researchers tested the efficacy of this antibody in patient-derived xenograft models of a variety of pediatric brain tumors. The treatment was successful at inhibiting CD47, killing tumor cells, and prolonging the animals’ survival, all without toxic effects on normal tissues. Morbidity and mortality associated with pediatric malignant primary brain tumors remain high in the absence of effective therapies. Macrophage-mediated phagocytosis of tumor cells via blockade of the anti-phagocytic CD47-SIRPα interaction using anti-CD47 antibodies has shown promise in preclinical xenografts of various human malignancies. We demonstrate the effect of a humanized anti-CD47 antibody, Hu5F9-G4, on five aggressive and etiologically distinct pediatric brain tumors: group 3 medulloblastoma (primary and metastatic), atypical teratoid rhabdoid tumor, primitive neuroectodermal tumor, pediatric glioblastoma, and diffuse intrinsic pontine glioma. Hu5F9-G4 demonstrated therapeutic efficacy in vitro and in vivo in patient-derived orthotopic xenograft models. Intraventricular administration of Hu5F9-G4 further enhanced its activity against disseminated medulloblastoma leptomeningeal disease. Notably, Hu5F9-G4 showed minimal activity against normal human neural cells in vitro and in vivo, a phenomenon reiterated in an immunocompetent allograft glioma model. Thus, Hu5F9-G4 is a potentially safe and effective therapeutic agent for managing multiple pediatric central nervous system malignancies.


Nature Medicine | 2015

Erratum: Functionally defined therapeutic targets in diffuse intrinsic pontine glioma(Nature Medicine (2015) 21 (555-559) DOI: 10.1038/nm.3855)

Catherine S. Grasso; Yujie Tang; Nathalene Truffaux; Noah Berlow; Lining Liu; Marie Anne Debily; Michael J. Quist; Lara E. Davis; Elaine C. Huang; Pamelyn Woo; Anitha Ponnuswami; Spenser Chen; Tessa Johung; Wenchao Sun; Mari Kogiso; Yuchen Du; Lin Qi; Yulun Huang; Marianne Hütt-Cabezas; Katherine E. Warren; Ludivine Le Dret; Paul S. Meltzer; Hua Mao; Martha Quezado; Dannis G. van Vuurden; Jinu Abraham; Maryam Fouladi; Matthew N. Svalina; Nicholas Wang; Cynthia Hawkins

Catherine S Grasso, Yujie Tang, Nathalene Truffaux, Noah E Berlow, Lining Liu, Marie-Anne Debily, Michael J Quist, Lara E Davis, Elaine C Huang, Pamelyn J Woo, Anitha Ponnuswami, Spenser Chen, Tessa B Johung, Wenchao Sun, Mari Kogiso, Yuchen Du, Lin Qi, Yulun Huang, Marianne Hütt-Cabezas, Katherine E Warren, Ludivine Le Dret, Paul S Meltzer, Hua Mao, Martha Quezado, Dannis G van Vuurden, Jinu Abraham, Maryam Fouladi, Matthew N Svalina, Nicholas Wang, Cynthia Hawkins, Javad Nazarian, Marta M Alonso, Eric H Raabe, Esther Hulleman, Paul T Spellman, Xiao-Nan Li, Charles Keller, Ranadip Pal, Jacques Grill & Michelle Monje Nat. Med. 21, 555–559 (2015); doi:10.1038/nm.3855; published online 4 May 2015; corrected after print 15 June 2015


Cancer Cell | 2017

Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma.

Surya Nagaraja; Nicholas A. Vitanza; Pamelyn Woo; Kathryn R. Taylor; Fang Liu; Lei Zhang; Meng Li; Wei Meng; Anitha Ponnuswami; Wenchao Sun; Jie Ma; Esther Hulleman; Tomek Swigut; Joanna Wysocka; Yujie Tang; Michelle Monje

Diffuse intrinsic pontine glioma (DIPG) is a fatal pediatric cancer with limited therapeutic options. The majority of cases of DIPG exhibit a mutation in histone-3 (H3K27M) that results in oncogenic transcriptional aberrancies. We show here that DIPG is vulnerable to transcriptional disruption using bromodomain inhibition or CDK7 blockade. Targeting oncogenic transcription through either of these methods synergizes with HDAC inhibition, and DIPG cells resistant to HDAC inhibitor therapy retain sensitivity to CDK7 blockade. Identification of super-enhancers in DIPG provides insights toward the cell of origin, highlighting oligodendroglial lineage genes, and reveals unexpected mechanisms mediating tumor viability and invasion, including potassium channel function and EPH receptor signaling. The findings presented demonstrate transcriptional vulnerabilities and elucidate previously unknown mechanisms of DIPG pathobiology.


Cancer Research | 2014

Abstract B6: Epigenetic regulation of Hedgehog pathway transcriptional output by BET bromodomain proteins

Yujie Tang; Simone Schubert; Jun Qi; Brian Nguyen; Sabran Masoud; Nujsaunusi Vue; Brianna Balansay; Furong Yu; Scott X. Atwood; Ramon J. Whitson; Anitha Ponnuswami; Spencer Chen; Sharareh Gholamin; Woo J. Pamelyn; Michelle Monje-Diesseroth; Sekyung Oh; Alex G. Lee; Jean Y. Tang; Rob Wechsler-Reya; Anthony E. Oro; James E. Bradner; Yoon-Jae Cho

Aberrant activation of Hedgehog signaling drives oncogenesis in several types of cancer. As a result, there has been significant interest in developing therapeutic strategies targeting this pathway, most notably through inhibition of Smoothened. Though Smoothened inhibitors have shown efficacy in several cancer clinical trials, the initial enthusiasm for these inhibitors has been tempered by emergence of resistance and a priori resistance, often via mutation of Smoothened itself or through dysregulation of downstream components of the Hedgehog signaling axis. Here we reveal a strategy that overcomes these resistance mechanisms by targeting the far downstream transcriptional mediators of Hedgehog signaling through inhibition of the BET bromodomain protein, BRD4. We show that knockdown of BRD4 or treatment with the BET bromodomain inhibitor, JQ1, dramatically inhibits transcription of GLI1 and other Hedgehog target genes upon ligand-mediated or genetic activation of the Hedgehog pathway. We confirm the inhibitory effect of JQ1 occurs downstream of SMO and SUFU and verify by chromatin immunoprecipitation that Brd4 directly occupies the GLI1 and GLI2 promoters, with a substantial decrease in the engagement of these genomic sites upon treatment with JQ1. We observe a corresponding downregulation of genes associated with medulloblastoma-specific GLI1 binding sites upon exposure to JQ1, confirming the direct regulation of GLI1 by BET bromodomain proteins. Finally, using patient- and GEMM-derived cell lines of Hedgehog-driven cancer (basal cell carcinoma, medulloblastoma and ATRT), we show that JQ1 decreases Hh pathway output and proliferation, even in cell lines resistant to Smoothened inhibitors. These results expand the role of BET bromodomain inhibitors to targeting Hedgehog-driven cancers and highlight a strategy that overcomes the limitation of Hedgehog pathway inhibitors currently in clinical use. Citation Format: Yujie Tang, Simone Schubert, Jun Qi, Brian Nguyen, Sabran Masoud, Nujsaunusi Vue, Brianna Balansay, Furong Yu, Scott X. Atwood, Ramon J. Whitson, Anitha Ponnuswami, Spencer Chen, Sharareh Gholamin, Woo J. Pamelyn, Michelle Monje-Diesseroth, Sekyung Oh, Alex Lee, Jean Y. Tang, Rob Wechsler-Reya, Anthony E. Oro, James E. Bradner, Yoon-Jae Cho. Epigenetic regulation of Hedgehog pathway transcriptional output by BET bromodomain proteins. [abstract]. In: Proceedings of the AACR Special Conference on Pediatric Cancer at the Crossroads: Translating Discovery into Improved Outcomes; Nov 3-6, 2013; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2013;74(20 Suppl):Abstract nr B6.


Neuro-oncology | 2015

BT-02FUNCTIONALLY-DEFINED THERAPEUTIC TARGETS IN DIFFUSE INTRINSIC PONTINE GLIOMA

Catherine S. Grasso; Yujie Tang; Nathalene Truffaux; Noah Berlow; Lining Liu; Marie-Anne Debily; Michael J. Quist; Lara E. Davis; Elaine C. Huang; Pamelyn Woo; Anitha Ponnuswami; Spenser Chen; Tessa Johung; Wenchao Sun; Mari Kogiso; Yuchen Du; Qi Lin; Yulun Huang; Marianne Hütt-Cabezas; Katherine E. Warren; Ludivine Le Dret; Paul S. Meltzer; Hua Mao; Martha Quezado; Dannis G. van Vuurden; Jinu Abraham; Maryam Fouladi; Matthew N. Svalina; Nicholas Wang; Cynthia Hawkins


Neuro-oncology | 2017

PDTM-29. TRANSCRIPTIONAL DEPENDENCIES IN DIFFUSE INTRINSIC PONTINE GLIOMA

Surya Nagaraja; Nicholas Vitanza; Pamelyn Woo; Kathryn R. Taylor; Fang Liu; Lei Zhang; Meng Li; Wei Meng; Anitha Ponnuswami; Wenchao Sun; Jie Ma; Esther Hulleman; Tomek Swigut; Joanna Wysocka; Yujie Tang; Michelle Monje-Deisseroth


Neuro-oncology | 2016

HG-23BET INHIBITORS WORK SYNERGISTICALLY WITH PANOBINOSTAT IN TREATING DIFFUSE INTRINSIC PONTINE GLIOMA

Yujie Tang; Surya Nagaraja; Nicholas A. Vitanza; Pamelyn Woo; Anitha Ponnuswami; Michelle Monje

Collaboration


Dive into the Anitha Ponnuswami's collaboration.

Top Co-Authors

Avatar

Yujie Tang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Mao

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge