Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine S. Grasso is active.

Publication


Featured researches published by Catherine S. Grasso.


Nature | 2012

The mutational landscape of lethal castration-resistant prostate cancer

Catherine S. Grasso; Yi Mi Wu; Dan R. Robinson; Xuhong Cao; Saravana M. Dhanasekaran; Amjad P. Khan; Michael J. Quist; Xiaojun Jing; Robert J. Lonigro; J. Chad Brenner; Irfan A. Asangani; Bushra Ateeq; Sang Y. Chun; Javed Siddiqui; Lee Sam; Matt Anstett; Rohit Mehra; John R. Prensner; Nallasivam Palanisamy; Gregory A Ryslik; Fabio Vandin; Benjamin J. Raphael; Lakshmi P. Kunju; Daniel R. Rhodes; Kenneth J. Pienta; Arul M. Chinnaiyan; Scott A. Tomlins

Characterization of the prostate cancer transcriptome and genome has identified chromosomal rearrangements and copy number gains and losses, including ETS gene family fusions, PTEN loss and androgen receptor (AR) amplification, which drive prostate cancer development and progression to lethal, metastatic castration-resistant prostate cancer (CRPC). However, less is known about the role of mutations. Here we sequenced the exomes of 50 lethal, heavily pre-treated metastatic CRPCs obtained at rapid autopsy (including three different foci from the same patient) and 11 treatment-naive, high-grade localized prostate cancers. We identified low overall mutation rates even in heavily treated CRPCs (2.00 per megabase) and confirmed the monoclonal origin of lethal CRPC. Integrating exome copy number analysis identified disruptions of CHD1 that define a subtype of ETS gene family fusion-negative prostate cancer. Similarly, we demonstrate that ETS2, which is deleted in approximately one-third of CRPCs (commonly through TMPRSS2:ERG fusions), is also deregulated through mutation. Furthermore, we identified recurrent mutations in multiple chromatin- and histone-modifying genes, including MLL2 (mutated in 8.6% of prostate cancers), and demonstrate interaction of the MLL complex with the AR, which is required for AR-mediated signalling. We also identified novel recurrent mutations in the AR collaborating factor FOXA1, which is mutated in 5 of 147 (3.4%) prostate cancers (both untreated localized prostate cancer and CRPC), and showed that mutated FOXA1 represses androgen signalling and increases tumour growth. Proteins that physically interact with the AR, such as the ERG gene fusion product, FOXA1, MLL2, UTX (also known as KDM6A) and ASXL1 were found to be mutated in CRPC. In summary, we describe the mutational landscape of a heavily treated metastatic cancer, identify novel mechanisms of AR signalling deregulated in prostate cancer, and prioritize candidates for future study.


Nucleic Acids Research | 2001

Genome-wide detection of alternative splicing in expressed sequences of human genes

Barmak Modrek; Alissa Resch; Catherine S. Grasso; Christopher Lee

We have identified 6201 alternative splice relationships in human genes, through a genome-wide analysis of expressed sequence tags (ESTs). Starting with approximately 2.1 million human mRNA and EST sequences, we mapped expressed sequences onto the draft human genome sequence and only accepted splices that obeyed the standard splice site consensus. A large fraction (47%) of these were observed multiple times, indicating that they comprise a substantial fraction of the mRNA species. The vast majority of the detected alternative forms appear to be novel, and produce highly specific, biologically meaningful control of function in both known and novel human genes, e.g. specific removal of the lysosomal targeting signal from HLA-DM beta chain, replacement of the C-terminal transmembrane domain and cytoplasmic tail in an FC receptor beta chain homolog with a different transmembrane domain and cytoplasmic tail, likely modulating its signal transduction activity. Our data indicate that a large proportion of human genes, probably 42% or more, are alternatively spliced, but that this appears to be observed mainly in certain types of molecules (e.g. cell surface receptors) and systemic functions, particularly the immune system and nervous system. These results provide a comprehensive dataset for understanding the role of alternative splicing in the human genome, accessible at http://www.bioinformatics.ucla.edu/HASDB.


Bioinformatics | 2002

Multiple sequence alignment using partial order graphs

Christopher Lee; Catherine S. Grasso; Mark F. Sharlow

MOTIVATION Progressive Multiple Sequence Alignment (MSA) methods depend on reducing an MSA to a linear profile for each alignment step. However, this leads to loss of information needed for accurate alignment, and gap scoring artifacts. RESULTS We present a graph representation of an MSA that can itself be aligned directly by pairwise dynamic programming, eliminating the need to reduce the MSA to a profile. This enables our algorithm (Partial Order Alignment (POA)) to guarantee that the optimal alignment of each new sequence versus each sequence in the MSA will be considered. Moreover, this algorithm introduces a new edit operator, homologous recombination, important for multidomain sequences. The algorithm has improved speed (linear time complexity) over existing MSA algorithms, enabling construction of massive and complex alignments (e.g. an alignment of 5000 sequences in 4 h on a Pentium II). We demonstrate the utility of this algorithm on a family of multidomain SH2 proteins, and on EST assemblies containing alternative splicing and polymorphism. AVAILABILITY The partial order alignment program POA is available at http://www.bioinformatics.ucla.edu/poa.


Nature Biotechnology | 2011

Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1 , an unannotated lincRNA implicated in disease progression

John R. Prensner; Matthew K. Iyer; O. Alejandro Balbin; Saravana M. Dhanasekaran; Qi Cao; J. Chad Brenner; Bharathi Laxman; Irfan A. Asangani; Catherine S. Grasso; Hal D. Kominsky; Xuhong Cao; Xiaojun Jing; Xiaoju Wang; Javed Siddiqui; John T. Wei; Dan R. Robinson; Hari Iyer; Nallasivam Palanisamy; Christopher A. Maher; Arul M. Chinnaiyan

Noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease and to reveal uncharacterized aspects of tumor biology. Here we discover 121 unannotated prostate cancer–associated ncRNA transcripts (PCATs) by ab initio assembly of high-throughput sequencing of polyA+ RNA (RNA-Seq) from a cohort of 102 prostate tissues and cells lines. We characterized one ncRNA, PCAT-1, as a prostate-specific regulator of cell proliferation and show that it is a target of the Polycomb Repressive Complex 2 (PRC2). We further found that patterns of PCAT-1 and PRC2 expression stratified patient tissues into molecular subtypes distinguished by expression signatures of PCAT-1–repressed target genes. Taken together, our findings suggest that PCAT-1 is a transcriptional repressor implicated in a subset of prostate cancer patients. These findings establish the utility of RNA-Seq to identify disease-associated ncRNAs that may improve the stratification of cancer subtypes.High-throughput sequencing of polyA+ RNA (RNA-Seq) in human cancer shows remarkable potential to identify both novel markers of disease and uncharacterized aspects of tumor biology, particularly non-coding RNA (ncRNA) species. We employed RNA-Seq on a cohort of 102 prostate tissues and cells lines and performed ab initio transcriptome assembly to discover unannotated ncRNAs. We nominated 121 such Prostate Cancer Associated Transcripts (PCATs) with cancer-specific expression patterns. Among these, we characterized PCAT-1 as a novel prostate-specific regulator of cell proliferation and target of the Polycomb Repressive Complex 2 (PRC2). We further found that high PCAT-1 and PRC2 expression stratified patient tissues into molecular subtypes distinguished by expression signatures of PCAT-1-repressed target genes. Taken together, the findings presented herein identify PCAT-1 as a novel transcriptional repressor implicated in subset of prostate cancer patients. These findings establish the utility of RNA-Seq to identify disease-associated ncRNAs that may improve the stratification of cancer subtypes.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Chimeric transcript discovery by paired-end transcriptome sequencing

Christopher A. Maher; Nallasivam Palanisamy; John C. Brenner; Xuhong Cao; Shanker Kalyana-Sundaram; Shujun Luo; Irina Khrebtukova; Terrence R. Barrette; Catherine S. Grasso; Jindan Yu; Robert J. Lonigro; Gary P. Schroth; Chandan Kumar-Sinha; Arul M. Chinnaiyan

Recurrent gene fusions are a prevalent class of mutations arising from the juxtaposition of 2 distinct regions, which can generate novel functional transcripts that could serve as valuable therapeutic targets in cancer. Therefore, we aim to establish a sensitive, high-throughput methodology to comprehensively catalog functional gene fusions in cancer by evaluating a paired-end transcriptome sequencing strategy. Not only did a paired-end approach provide a greater dynamic range in comparison with single read based approaches, but it clearly distinguished the high-level “driving” gene fusions, such as BCR-ABL1 and TMPRSS2-ERG, from potential lower level “passenger” gene fusions. Also, the comprehensiveness of a paired-end approach enabled the discovery of 12 previously undescribed gene fusions in 4 commonly used cell lines that eluded previous approaches. Using the paired-end transcriptome sequencing approach, we observed read-through mRNA chimeras, tissue-type restricted chimeras, converging transcripts, diverging transcripts, and overlapping mRNA transcripts. Last, we successfully used paired-end transcriptome sequencing to detect previously undescribed ETS gene fusions in prostate tumors. Together, this study establishes a highly specific and sensitive approach for accurately and comprehensively cataloguing chimeras within a sample using paired-end transcriptome sequencing.


Nature Genetics | 2014

Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma.

Kathryn R. Taylor; Alan Mackay; Nathalene Truffaux; Yaron S N Butterfield; Olena Morozova; Cathy Philippe; David Castel; Catherine S. Grasso; Maria Vinci; Diana Carvalho; Angel M. Carcaboso; Carmen Torres; Ofelia Cruz; Jaume Mora; Natacha Entz-Werle; Wendy J. Ingram; Michelle Monje; Darren Hargrave; Alex N. Bullock; Stéphanie Puget; Stephen Yip; Chris Jones; Jacques Grill

Diffuse intrinsic pontine gliomas (DIPGs) are highly infiltrative malignant glial neoplasms of the ventral pons that, due to their location within the brain, are unsuitable for surgical resection and consequently have a universally dismal clinical outcome. The median survival time is 9–12 months, with neither chemotherapeutic nor targeted agents showing substantial survival benefit in clinical trials in children with these tumors. We report the identification of recurrent activating mutations in the ACVR1 gene, which encodes a type I activin receptor serine/threonine kinase, in 21% of DIPG samples. Strikingly, these somatic mutations (encoding p.Arg206His, p.Arg258Gly, p.Gly328Glu, p.Gly328Val, p.Gly328Trp and p.Gly356Asp substitutions) have not been reported previously in cancer but are identical to mutations found in the germ line of individuals with the congenital childhood developmental disorder fibrodysplasia ossificans progressiva (FOP) and have been shown to constitutively activate the BMP–TGF-β signaling pathway. These mutations represent new targets for therapeutic intervention in this otherwise incurable disease.


Nature Medicine | 2011

Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer.

Dan R. Robinson; Shanker Kalyana-Sundaram; Yi Mi Wu; Sunita Shankar; Xuhong Cao; Bushra Ateeq; Irfan A. Asangani; Matthew K. Iyer; Christopher A. Maher; Catherine S. Grasso; Robert J. Lonigro; Michael J. Quist; Javed Siddiqui; Rohit Mehra; Xiaojun Jing; Thomas J. Giordano; Michael S. Sabel; Celina G. Kleer; Nallasivam Palanisamy; Rachael Natrajan; Maryou B. Lambros; Jorge S. Reis-Filho; Chandan Kumar-Sinha; Arul M. Chinnaiyan

Breast cancer is a heterogeneous disease that has a wide range of molecular aberrations and clinical outcomes. Here we used paired-end transcriptome sequencing to explore the landscape of gene fusions in a panel of breast cancer cell lines and tissues. We observed that individual breast cancers have a variety of expressed gene fusions. We identified two classes of recurrent gene rearrangements involving genes encoding microtubule-associated serine-threonine kinase (MAST) and members of the Notch family. Both MAST and Notch-family gene fusions have substantial phenotypic effects in breast epithelial cells. Breast cancer cell lines harboring Notch gene rearrangements are uniquely sensitive to inhibition of Notch signaling, and overexpression of MAST1 or MAST2 gene fusions has a proliferative effect both in vitro and in vivo. These findings show that recurrent gene rearrangements have key roles in subsets of carcinomas and suggest that transcriptome sequencing could identify individuals with rare, targetable gene fusions.


Cancer Discovery | 2017

Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations

Daniel Sanghoon Shin; Jesse M. Zaretsky; Helena Escuin-Ordinas; Angel Garcia-Diaz; Siwen Hu-Lieskovan; Anusha Kalbasi; Catherine S. Grasso; Willy Hugo; Salemiz Sandoval; Davis Y. Torrejon; Nicolaos Palaskas; Rodriguez Ga; Giulia Parisi; Azhdam A; Bartosz Chmielowski; Grace Cherry; Elizabeth Seja; Beata Berent-Maoz; Shintaku Ip; Le Dt; Pardoll Dm; Diaz La; Paul C. Tumeh; Thomas G. Graeber; Roger S. Lo; Begonya Comin-Anduix; Antoni Ribas

Loss-of-function mutations in JAK1/2 can lead to acquired resistance to anti-programmed death protein 1 (PD-1) therapy. We reasoned that they may also be involved in primary resistance to anti-PD-1 therapy. JAK1/2-inactivating mutations were noted in tumor biopsies of 1 of 23 patients with melanoma and in 1 of 16 patients with mismatch repair-deficient colon cancer treated with PD-1 blockade. Both cases had a high mutational load but did not respond to anti-PD-1 therapy. Two out of 48 human melanoma cell lines had JAK1/2 mutations, which led to a lack of PD-L1 expression upon interferon gamma exposure mediated by an inability to signal through the interferon gamma receptor pathway. JAK1/2 loss-of-function alterations in The Cancer Genome Atlas confer adverse outcomes in patients. We propose that JAK1/2 loss-of-function mutations are a genetic mechanism of lack of reactive PD-L1 expression and response to interferon gamma, leading to primary resistance to PD-1 blockade therapy. SIGNIFICANCE A key functional result from somatic JAK1/2 mutations in a cancer cell is the inability to respond to interferon gamma by expressing PD-L1 and many other interferon-stimulated genes. These mutations result in a genetic mechanism for the absence of reactive PD-L1 expression, and patients harboring such tumors would be unlikely to respond to PD-1 blockade therapy. Cancer Discov; 7(2); 188-201. ©2016 AACR.See related commentary by Marabelle et al., p. 128This article is highlighted in the In This Issue feature, p. 115.


Nature Medicine | 2015

Functionally defined therapeutic targets in diffuse intrinsic pontine glioma

Catherine S. Grasso; Yujie Tang; Nathalene Truffaux; Noah Berlow; Lining Liu; Marie Anne Debily; Michael J. Quist; Lara E. Davis; Elaine C. Huang; Pamelyn Woo; Anitha Ponnuswami; Spenser Chen; Tessa Johung; Wenchao Sun; Mari Kogiso; Yuchen Du; Lin Qi; Yulun Huang; Marianne Hütt-Cabezas; Katherine E. Warren; Ludivine Le Dret; Paul S. Meltzer; Hua Mao; Martha Quezado; Dannis G. van Vuurden; Jinu Abraham; Maryam Fouladi; Matthew N. Svalina; Nicholas Wang; Cynthia Hawkins

Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNA-seq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi–histone deacetylase inhibitor panobinostat demonstrated therapeutic efficacy both in vitro and in DIPG orthotopic xenograft models. Combination testing of panobinostat and the histone demethylase inhibitor GSK-J4 revealed that the two had synergistic effects. Together, these data suggest a promising therapeutic strategy for DIPG.


Genome Research | 2011

Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer

Jung Kim; Saravana M. Dhanasekaran; John R. Prensner; Xuhong Cao; Dan R. Robinson; Shanker Kalyana-Sundaram; Christina Huang; Sunita Shankar; Xiaojun Jing; Matthew K. Iyer; Ming Hu; Lee Sam; Catherine S. Grasso; Christopher A. Maher; Nallasivam Palanisamy; Rohit Mehra; Hal D. Kominsky; Javed Siddiqui; Jindan Yu; Zhaohui S. Qin; Arul M. Chinnaiyan

Beginning with precursor lesions, aberrant DNA methylation marks the entire spectrum of prostate cancer progression. We mapped the global DNA methylation patterns in select prostate tissues and cell lines using MethylPlex-next-generation sequencing (M-NGS). Hidden Markov model-based next-generation sequence analysis identified ∼68,000 methylated regions per sample. While global CpG island (CGI) methylation was not differential between benign adjacent and cancer samples, overall promoter CGI methylation significantly increased from ~12.6% in benign samples to 19.3% and 21.8% in localized and metastatic cancer tissues, respectively (P-value < 2 × 10(-16)). We found distinct patterns of promoter methylation around transcription start sites, where methylation occurred not only on the CGIs, but also on flanking regions and CGI sparse promoters. Among the 6691 methylated promoters in prostate tissues, 2481 differentially methylated regions (DMRs) are cancer-specific, including numerous novel DMRs. A novel cancer-specific DMR in the WFDC2 promoter showed frequent methylation in cancer (17/22 tissues, 6/6 cell lines), but not in the benign tissues (0/10) and normal PrEC cells. Integration of LNCaP DNA methylation and H3K4me3 data suggested an epigenetic mechanism for alternate transcription start site utilization, and these modifications segregated into distinct regions when present on the same promoter. Finally, we observed differences in repeat element methylation, particularly LINE-1, between ERG gene fusion-positive and -negative cancers, and we confirmed this observation using pyrosequencing on a tissue panel. This comprehensive methylome map will further our understanding of epigenetic regulation in prostate cancer progression.

Collaboration


Dive into the Catherine S. Grasso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuhong Cao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rohit Mehra

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge