Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone Schubert is active.

Publication


Featured researches published by Simone Schubert.


Cancer Cell | 2013

Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas

Sebastian Bender; Yujie Tang; Anders M. Lindroth; Volker Hovestadt; David T. W. Jones; Marcel Kool; Marc Zapatka; Paul A. Northcott; Dominik Sturm; Wei Wang; Bernhard Radlwimmer; Jonas W. Højfeldt; Nathalene Truffaux; David Castel; Simone Schubert; Marina Ryzhova; Huriye Şeker-Cin; Jan Gronych; Pascal-David Johann; Sebastian Stark; Jochen Meyer; Till Milde; Martin U. Schuhmann; Martin Ebinger; Camelia Maria Monoranu; Anitha Ponnuswami; Spenser Chen; Chris Jones; Olaf Witt; V. Peter Collins

Two recurrent mutations, K27M and G34R/V, within histone variant H3.3 were recently identified in ∼50% of pHGGs. Both mutations define clinically and biologically distinct subgroups of pHGGs. Here, we provide further insight about the dominant-negative effect of K27M mutant H3.3, leading to a global reduction of the repressive histone mark H3K27me3. We demonstrate that this is caused by aberrant recruitment of the PRC2 complex to K27M mutant H3.3 and enzymatic inhibition of the H3K27me3-establishing methyltransferase EZH2. By performing chromatin immunoprecipitation followed by next-generation sequencing and whole-genome bisulfite sequencing in primary pHGGs, we show that reduced H3K27me3 levels and DNA hypomethylation act in concert to activate gene expression in K27M mutant pHGGs.


Clinical Cancer Research | 2014

BET Bromodomain Inhibition of MYC-Amplified Medulloblastoma

Pratiti Bandopadhayay; Guillaume Bergthold; Brian Nguyen; Simone Schubert; Sharareh Gholamin; Yujie Tang; Sara Bolin; Steven E. Schumacher; Rhamy Zeid; Sabran Masoud; Furong Yu; Nujsaubnusi Vue; William J. Gibson; Brenton R. Paolella; Siddhartha Mitra; Samuel H. Cheshier; Jun Qi; Kun-Wei Liu; Robert J. Wechsler-Reya; William A. Weiss; Fredrik J. Swartling; Mark W. Kieran; James E. Bradner; Rameen Beroukhim; Yoon-Jae Cho

Purpose: MYC-amplified medulloblastomas are highly lethal tumors. Bromodomain and extraterminal (BET) bromodomain inhibition has recently been shown to suppress MYC-associated transcriptional activity in other cancers. The compound JQ1 inhibits BET bromodomain-containing proteins, including BRD4. Here, we investigate BET bromodomain targeting for the treatment of MYC-amplified medulloblastoma. Experimental Design: We evaluated the effects of genetic and pharmacologic inhibition of BET bromodomains on proliferation, cell cycle, and apoptosis in established and newly generated patient- and genetically engineered mouse model (GEMM)-derived medulloblastoma cell lines and xenografts that harbored amplifications of MYC or MYCN. We also assessed the effect of JQ1 on MYC expression and global MYC-associated transcriptional activity. We assessed the in vivo efficacy of JQ1 in orthotopic xenografts established in immunocompromised mice. Results: Treatment of MYC-amplified medulloblastoma cells with JQ1 decreased cell viability associated with arrest at G1 and apoptosis. We observed downregulation of MYC expression and confirmed the inhibition of MYC-associated transcriptional targets. The exogenous expression of MYC from a retroviral promoter reduced the effect of JQ1 on cell viability, suggesting that attenuated levels of MYC contribute to the functional effects of JQ1. JQ1 significantly prolonged the survival of orthotopic xenograft models of MYC-amplified medulloblastoma (P < 0.001). Xenografts harvested from mice after five doses of JQ1 had reduced the expression of MYC mRNA and a reduced proliferative index. Conclusion: JQ1 suppresses MYC expression and MYC-associated transcriptional activity in medulloblastomas, resulting in an overall decrease in medulloblastoma cell viability. These preclinical findings highlight the promise of BET bromodomain inhibitors as novel agents for MYC-amplified medulloblastoma. Clin Cancer Res; 20(4); 912–25. ©2013 AACR.


Nature Medicine | 2014

Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition

Yujie Tang; Sharareh Gholamin; Simone Schubert; Minde Willardson; Alex G. Lee; Pratiti Bandopadhayay; Guillame Bergthold; Sabran Masoud; Brian Nguyen; Nujsaubnusi Vue; Brianna Balansay; Furong Yu; Sekyung Oh; Pamelyn Woo; Spenser Chen; Anitha Ponnuswami; Michelle Monje; Scott X. Atwood; Ramon J. Whitson; Siddhartha Mitra; Samuel H. Cheshier; Jun Qi; Rameen Beroukhim; Jean Y. Tang; Rob Wechsler-Reya; Anthony E. Oro; Brian A. Link; James E. Bradner; Yoon-Jae Cho

Hedgehog signaling drives oncogenesis in several cancers, and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened (SMO). However, resistance to Smoothened inhibitors occurs by genetic changes of Smoothened or other downstream Hedgehog components. Here we overcome these resistance mechanisms by modulating GLI transcription through inhibition of bromo and extra C-terminal (BET) bromodomain proteins. We show that BRD4 and other BET bromodomain proteins regulate GLI transcription downstream of SMO and suppressor of fused (SUFU), and chromatin immunoprecipitation studies reveal that BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites after treatment with JQ1, a small-molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM (genetically engineered mouse model)-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists. Altogether, our results reveal BET proteins as critical regulators of Hedgehog pathway transcriptional output and nominate BET bromodomain inhibitors as a strategy for treating Hedgehog-driven tumors with emerged or a priori resistance to Smoothened antagonists.


American Journal of Neuroradiology | 2014

MRI Surrogates for Molecular Subgroups of Medulloblastoma

S. Perreault; Vijay Ramaswamy; Achal S. Achrol; Kevin Chao; Tiffany Ting Liu; David Shih; Marc Remke; Simone Schubert; Eric Bouffet; Paul G. Fisher; Sonia Partap; Hannes Vogel; Michael D. Taylor; Yoon-Jae Cho; Kristen W. Yeom

These authors seek to establish the imaging features that would allow classification of medulloblastomas according to their genetic attributes. In nearly 100 tumors they found that groups 3 and 4 occurred predominantly in the fourth ventricle, wingless ones were located in the cerebellar peduncles or CPA region, and sonic hedgehog tumors were present in cerebellar hemispheres. Midline group 4 tumors showed minimal contrast enhancement. Thus, tumor location and contrast-enhancement patterns may be predictive of the molecular subtypes of medulloblastoma. BACKGROUND AND PURPOSE: Recently identified molecular subgroups of medulloblastoma have shown potential for improved risk stratification. We hypothesized that distinct MR imaging features can predict these subgroups. MATERIALS AND METHODS: All patients with a diagnosis of medulloblastoma at one institution, with both pretherapy MR imaging and surgical tissue, served as the discovery cohort (n = 47). MR imaging features were assessed by 3 blinded neuroradiologists. NanoString-based assay of tumor tissues was conducted to classify the tumors into the 4 established molecular subgroups (wingless, sonic hedgehog, group 3, and group 4). A second pediatric medulloblastoma cohort (n = 52) from an independent institution was used for validation of the MR imaging features predictive of the molecular subtypes. RESULTS: Logistic regression analysis within the discovery cohort revealed tumor location (P < .001) and enhancement pattern (P = .001) to be significant predictors of medulloblastoma subgroups. Stereospecific computational analyses confirmed that group 3 and 4 tumors predominated within the midline fourth ventricle (100%, P = .007), wingless tumors were localized to the cerebellar peduncle/cerebellopontine angle cistern with a positive predictive value of 100% (95% CI, 30%–100%), and sonic hedgehog tumors arose in the cerebellar hemispheres with a positive predictive value of 100% (95% CI, 59%–100%). Midline group 4 tumors presented with minimal/no enhancement with a positive predictive value of 91% (95% CI, 59%–98%). When we used the MR imaging feature–based regression model, 66% of medulloblastomas were correctly predicted in the discovery cohort, and 65%, in the validation cohort. CONCLUSIONS: Tumor location and enhancement pattern were predictive of molecular subgroups of pediatric medulloblastoma and may potentially serve as a surrogate for genomic testing.


Cancer Cell | 2016

HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC-Driven Medulloblastoma

Yanxin Pei; Kun Wei Liu; Jun Wang; Alexandra Garancher; Ran Tao; Lourdes Adriana Esparza; Donna L. Maier; Yoko T. Udaka; Najiba Murad; Sorana Morrissy; Huriye Seker-Cin; Sebastian Brabetz; Lin Qi; Mari Kogiso; Simone Schubert; James M. Olson; Yoon-Jae Cho; Xiao-Nan Li; John R. Crawford; Michael L. Levy; Marcel Kool; Stefan M. Pfister; Michael D. Taylor; Robert J. Wechsler-Reya

Medulloblastoma (MB) is a highly malignant pediatric brain tumor. Despite aggressive therapy, many patients succumb to the disease, and survivors experience severe side effects from treatment. MYC-driven MB has a particularly poor prognosis and would greatly benefit from more effective therapies. We used an animal model of MYC-driven MB to screen for drugs that decrease viability of tumor cells. Among the most effective compounds were histone deacetylase inhibitors (HDACIs). HDACIs potently inhibit survival of MYC-driven MB cells in vitro, in part by inducing expression of the FOXO1 tumor suppressor gene. HDACIs also synergize with phosphatidylinositol 3-kinase inhibitors to inhibit tumor growth in vivo. These studies identify an effective combination therapy for the most aggressive form of MB.


Science Translational Medicine | 2017

Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors

Sharareh Gholamin; Siddhartha Mitra; Abdullah H. Feroze; Jie Liu; Suzana Assad Kahn; Michael Zhang; Rogelio Esparza; Chase Richard; Vijay Ramaswamy; Marc Remke; Anne K. Volkmer; Stephen B. Willingham; Anitha Ponnuswami; Aaron McCarty; Patricia Lovelace; Theresa A. Storm; Simone Schubert; Gregor Hutter; Cyndhavi Narayanan; Pauline Chu; Eric Raabe; Griffith R. Harsh; Michael D. Taylor; Michelle Monje; Yoon Jae Cho; Ravi Majeti; Jens Peter Volkmer; Paul G. Fisher; Gerald A. Grant; Gary K. Steinberg

Anti-CD47 antibody is effective for treating malignant pediatric brain tumors without detectable toxicity in patient-derived xenograft models. Brain tumors, meet macrophages A protein called CD47 is often expressed on the surface of tumor cells, where it serves as a “don’t eat me” signal that blocks macrophages from attacking the tumor. To overcome this signal and allow the macrophages to “eat” tumor cells, Gholamin et al. engineered a humanized antibody that blocks CD47 signaling. The researchers tested the efficacy of this antibody in patient-derived xenograft models of a variety of pediatric brain tumors. The treatment was successful at inhibiting CD47, killing tumor cells, and prolonging the animals’ survival, all without toxic effects on normal tissues. Morbidity and mortality associated with pediatric malignant primary brain tumors remain high in the absence of effective therapies. Macrophage-mediated phagocytosis of tumor cells via blockade of the anti-phagocytic CD47-SIRPα interaction using anti-CD47 antibodies has shown promise in preclinical xenografts of various human malignancies. We demonstrate the effect of a humanized anti-CD47 antibody, Hu5F9-G4, on five aggressive and etiologically distinct pediatric brain tumors: group 3 medulloblastoma (primary and metastatic), atypical teratoid rhabdoid tumor, primitive neuroectodermal tumor, pediatric glioblastoma, and diffuse intrinsic pontine glioma. Hu5F9-G4 demonstrated therapeutic efficacy in vitro and in vivo in patient-derived orthotopic xenograft models. Intraventricular administration of Hu5F9-G4 further enhanced its activity against disseminated medulloblastoma leptomeningeal disease. Notably, Hu5F9-G4 showed minimal activity against normal human neural cells in vitro and in vivo, a phenomenon reiterated in an immunocompetent allograft glioma model. Thus, Hu5F9-G4 is a potentially safe and effective therapeutic agent for managing multiple pediatric central nervous system malignancies.


Acta Neuropathologica | 2014

α5-GABAA receptors negatively regulate MYC-amplified medulloblastoma growth

Soma Sengupta; Shyamal Dilhan Weeraratne; Hongyu Sun; Jillian Phallen; Sundari Rallapalli; Natalia Teider; Bela Kosaras; Vladimir Amani; Jessica Pierre-Francois; Yujie Tang; Brian Nguyen; Furong Yu; Simone Schubert; Brianna Balansay; Dimitris Mathios; Mirna Lechpammer; Tenley C. Archer; Phuoc T. Tran; Richard J. Reimer; James M. Cook; Michael Lim; Frances E. Jensen; Scott L. Pomeroy; Yoon-Jae Cho

Neural tumors often express neurotransmitter receptors as markers of their developmental lineage. Although these receptors have been well characterized in electrophysiological, developmental and pharmacological settings, their importance in the maintenance and progression of brain tumors and, importantly, the effect of their targeting in brain cancers remains obscure. Here, we demonstrate high levels of GABRA5, which encodes the α5-subunit of the GABAA receptor complex, in aggressive MYC-driven, “Group 3” medulloblastomas. We hypothesized that modulation of α5-GABAA receptors alters medulloblastoma cell survival and monitored biological and electrophysiological responses of GABRA5-expressing medulloblastoma cells upon pharmacological targeting of the GABAA receptor. While antagonists, inverse agonists and non-specific positive allosteric modulators had limited effects on medulloblastoma cells, a highly specific and potent α5-GABAA receptor agonist, QHii066, resulted in marked membrane depolarization and a significant decrease in cell survival. This effect was GABRA5 dependent and mediated through the induction of apoptosis as well as accumulation of cells in S and G2 phases of the cell cycle. Chemical genomic profiling of QHii066-treated medulloblastoma cells confirmed inhibition of MYC-related transcriptional activity and revealed an enrichment of HOXA5 target gene expression. siRNA-mediated knockdown of HOXA5 markedly blunted the response of medulloblastoma cells to QHii066. Furthermore, QHii066 sensitized GABRA5 positive medulloblastoma cells to radiation and chemotherapy consistent with the role of HOXA5 in directly regulating p53 expression and inducing apoptosis. Thus, our results provide novel insights into the synthetic lethal nature of α5-GABAA receptor activation in MYC-driven/Group 3 medulloblastomas and propose its targeting as a novel strategy for the management of this highly aggressive tumor.


Oncotarget | 2016

Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress

Sekyung Oh; Ryan A. Flynn; Stephen N. Floor; James Purzner; Lance Martin; Brian T. Do; Simone Schubert; Dedeepya Vaka; Sorana Morrissy; Yisu Li; Marcel Kool; Volker Hovestadt; David T. W. Jones; Paul A. Northcott; Thomas Risch; Hans Jörg Warnatz; Marie-Laure Yaspo; Christopher M. Adams; Ryan Leib; Marcus Breese; Marco A. Marra; David Malkin; Peter Lichter; Jennifer A. Doudna; Stefan M. Pfister; Michael D. Taylor; Howard Y. Chang; Yoon-Jae Cho

DDX3X encodes a DEAD-box family RNA helicase (DDX3) commonly mutated in medulloblastoma, a highly aggressive cerebellar tumor affecting both children and adults. Despite being implicated in several facets of RNA metabolism, the nature and scope of DDX3′s interactions with RNA remain unclear. Here, we show DDX3 collaborates extensively with the translation initiation machinery through direct binding to 5′UTRs of nearly all coding RNAs, specific sites on the 18S rRNA, and multiple components of the translation initiation complex. Impairment of translation initiation is also evident in primary medulloblastomas harboring mutations in DDX3X, further highlighting DDX3′s role in this process. Arsenite-induced stress shifts DDX3 binding from the 5′UTR into the coding region of mRNAs concomitant with a general reduction of translation, and both the shift of DDX3 on mRNA and decreased translation are blunted by expression of a catalytically-impaired, medulloblastoma-associated DDX3R534H variant. Furthermore, despite the global repression of translation induced by arsenite, translation is preserved on select genes involved in chromatin organization in DDX3R534H-expressing cells. Thus, DDX3 interacts extensively with RNA and ribosomal machinery to help remodel the translation landscape in response to stress, while cancer-related DDX3 variants adapt this response to selectively preserve translation.


Clinical Cancer Research | 2016

Abstract B37: Chemi-genomic analysis of patient-derived xenografts to identify personalized therapies for medulloblastoma

Jessica M. Rusert; Alexandra Garancher; Yoko T. Udaka; Sebastian Brabetz; Lourdes A. Esparza; Huriye Seker-Cin; Lin Qi; Mari Kogiso; Simone Schubert; Till Milde; Yoon-Jae Cho; Xiao-Nan Li; James M. Olson; John R. Crawford; Michael L. Levy; Marcel Kool; Stefan M. Pfister; Robert J. Wechsler-Reya

Medulloblastoma (MB) is the most common malignant brain tumor in children. Even with an intensive regimen of surgery, radiation and chemotherapy, one-third of patients still die from their disease. Moreover, survivors suffer devastating side effects including cognitive deficits, endocrine disorders and an increased incidence of secondary cancers later in life. Thus, more effective and less toxic therapies are desperately needed. Recent genomic analyses have identified 4 major subgroups of MB—WNT, SHH, Group 3 and Group 4—that differ in terms of mutations, gene expression profiles and patient outcomes. Despite this heterogeneity, all MB patients currently receive the same therapy. To identify novel therapies for each subgroup of MB, we have assembled a diverse panel of patient-derived xenograft (PDX) lines. These lines, established by orthotopic transplantation of tumor cells obtained from surgery, recapitulate the properties of patients9 tumors more accurately than cultured cell lines. We are using these PDX lines to screen small molecule libraries and identify compounds that can inhibit tumor growth and survival. To date we have completed screening of 18 lines, including 10 representing Group 3 MB, the most aggressive and lethal form of the disease. Among the ~7800 compounds tested, we have found 20 that are effective against the majority of Group 3 PDX lines. Ongoing studies are focused on validating the activity of these compounds against additional Group 3 lines and moving the most promising ones forward into in vivo efficacy studies. Similar approaches will be pursued for each of the other subgroups of MB. Drug response data will also be compared with genomic and epigenomic data (whole exome and low coverage whole genome DNA sequencing, DNA methylation analysis, and gene expression profiling) to identify biomarkers of drug responsiveness and key pathways that may be exploited for therapy. Based on these studies, we hope to move away from a one-size-fits-all approach, and begin to treat each patient with therapies that are likely to be effective against their tumor. Citation Format: Jessica M. Rusert, Alexandra Garancher, Yoko T. Udaka, Sebastian Brabetz, Lourdes A. Esparza, Huriye Seker-Cin, Lin Qi, Mari Kogiso, Simone Schubert, Till Milde, Yoon-Jae Cho, Xiao-Nan Li, James M. Olson, John R. Crawford, Michael L. Levy, Marcel Kool, Stefan M. Pfister, Robert J. Wechsler-Reya. Chemi-genomic analysis of patient-derived xenografts to identify personalized therapies for medulloblastoma. [abstract]. In: Proceedings of the AACR Special Conference: Patient-Derived Cancer Models: Present and Future Applications from Basic Science to the Clinic; Feb 11-14, 2016; New Orleans, LA. Philadelphia (PA): AACR; Clin Cancer Res 2016;22(16_Suppl):Abstract nr B37.


Cancer Research | 2014

Abstract B6: Epigenetic regulation of Hedgehog pathway transcriptional output by BET bromodomain proteins

Yujie Tang; Simone Schubert; Jun Qi; Brian Nguyen; Sabran Masoud; Nujsaunusi Vue; Brianna Balansay; Furong Yu; Scott X. Atwood; Ramon J. Whitson; Anitha Ponnuswami; Spencer Chen; Sharareh Gholamin; Woo J. Pamelyn; Michelle Monje-Diesseroth; Sekyung Oh; Alex G. Lee; Jean Y. Tang; Rob Wechsler-Reya; Anthony E. Oro; James E. Bradner; Yoon-Jae Cho

Aberrant activation of Hedgehog signaling drives oncogenesis in several types of cancer. As a result, there has been significant interest in developing therapeutic strategies targeting this pathway, most notably through inhibition of Smoothened. Though Smoothened inhibitors have shown efficacy in several cancer clinical trials, the initial enthusiasm for these inhibitors has been tempered by emergence of resistance and a priori resistance, often via mutation of Smoothened itself or through dysregulation of downstream components of the Hedgehog signaling axis. Here we reveal a strategy that overcomes these resistance mechanisms by targeting the far downstream transcriptional mediators of Hedgehog signaling through inhibition of the BET bromodomain protein, BRD4. We show that knockdown of BRD4 or treatment with the BET bromodomain inhibitor, JQ1, dramatically inhibits transcription of GLI1 and other Hedgehog target genes upon ligand-mediated or genetic activation of the Hedgehog pathway. We confirm the inhibitory effect of JQ1 occurs downstream of SMO and SUFU and verify by chromatin immunoprecipitation that Brd4 directly occupies the GLI1 and GLI2 promoters, with a substantial decrease in the engagement of these genomic sites upon treatment with JQ1. We observe a corresponding downregulation of genes associated with medulloblastoma-specific GLI1 binding sites upon exposure to JQ1, confirming the direct regulation of GLI1 by BET bromodomain proteins. Finally, using patient- and GEMM-derived cell lines of Hedgehog-driven cancer (basal cell carcinoma, medulloblastoma and ATRT), we show that JQ1 decreases Hh pathway output and proliferation, even in cell lines resistant to Smoothened inhibitors. These results expand the role of BET bromodomain inhibitors to targeting Hedgehog-driven cancers and highlight a strategy that overcomes the limitation of Hedgehog pathway inhibitors currently in clinical use. Citation Format: Yujie Tang, Simone Schubert, Jun Qi, Brian Nguyen, Sabran Masoud, Nujsaunusi Vue, Brianna Balansay, Furong Yu, Scott X. Atwood, Ramon J. Whitson, Anitha Ponnuswami, Spencer Chen, Sharareh Gholamin, Woo J. Pamelyn, Michelle Monje-Diesseroth, Sekyung Oh, Alex Lee, Jean Y. Tang, Rob Wechsler-Reya, Anthony E. Oro, James E. Bradner, Yoon-Jae Cho. Epigenetic regulation of Hedgehog pathway transcriptional output by BET bromodomain proteins. [abstract]. In: Proceedings of the AACR Special Conference on Pediatric Cancer at the Crossroads: Translating Discovery into Improved Outcomes; Nov 3-6, 2013; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2013;74(20 Suppl):Abstract nr B6.

Collaboration


Dive into the Simone Schubert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yujie Tang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge