Anjan Panneer Selvam
University of Texas at Dallas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anjan Panneer Selvam.
Scientific Reports | 2016
Anjan Panneer Selvam; Sriram Muthukumar; Vikramshankar Kamakoti; Shalini Prasad
We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001–100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours.
Scientific Reports | 2015
Rujuta D. Munje; Sriram Muthukumar; Anjan Panneer Selvam; Shalini Prasad
An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10–200 ng/mL.
Biosensors and Bioelectronics | 2014
Michael Jacobs; Sriram Muthukumar; Anjan Panneer Selvam; Jon Engel Craven; Shalini Prasad
This study demonstrates the development of nanotextured zinc oxide (ZnO) thin films sputter deposited on printed circuit boards (PCB) to enhance the capability in detecting low concentrations of the protein troponin-T. The presence of this particular biomarker in the bloodstream is a direct indicator of current and/or future risk of various forms of cardiovascular diseases. Electrical transduction through impedance spectroscopy was used to detect troponin-T functionalized immunoassays on nanotextured ZnO surfaces. Calibration of the immunoassay was performed by measuring the impedance changes resulting from the binding of increasing concentrations of troponin-T to the immobilized antibodies on the ZnO surface in (i) phosphate buffered saline (PBS) and (ii) human serum. The limit of detection achieved using this platform was 10 fg/mL and 100 fg/mL in PBS and human serum, respectively. Enhanced detection of troponin-T was found to correlate to the oxygen vacancies in the ZnO thin film. PCB was chosen as the substrate for ease of integration with microelectronic device manufacturing.
Future Cardiology | 2013
Anjan Panneer Selvam; Shalini Prasad
AIM To demonstrate a label-free electrical immunoassay for profiling vascular biomarker N-terminal pro-brain natriuretic peptide (NT-proBNP) associated with improved cardiac risk prediction. MATERIALS & METHODS A high-density nanowell-based electrical immunoassay has been designed by integrating nanoporous aluminum oxide onto printed circuit board chips for the detection of NT-proBNP. The concentration of the biomarker is quantitatively determined by measuring impedance changes to the electrical double layer within the nanowells using electrochemical impedance spectroscopy. Detection sensitivity in the fg/ml range was obtained due to spatial confinement of the target biomarkers in size-matched nanowells. RESULTS & DISCUSSION Electrical immunoassay performance was determined for the detection of NT-proBNP in phosphate-buffered saline (PBS) and human serum (HS). The lower limit of detection for the sensor was observed to be 10 fg/ml in PBS and 500 fg/ml in HS. The upper limit of detection was observed to be 500 fg/ml in PBS and 500 ng/ml in HS. CONCLUSION A label-free technique for detection of NT-proBNP at clinically relevant concentrations for evaluating cardiac risk is demonstrated. High sensitivity and specificity, robust detection and low volume (100 µl) per assay project the technology to be a successful competitor to traditional ELISA-based techniques.
Journal of Laboratory Automation | 2013
Shalini Prasad; Anjan Panneer Selvam; Ravikiran Reddy; Adrian Love
A silicon nanosensor technology based on electrical impedance measurements has been developed for the detection of proteins. The nanosensor miniaturizes the high-density, low-volume multiwell plate concept. The scientific core of this technology lies in integrating nanoporous membranes with microfabricated chip platforms. This results in the conversion of individual pores into nanowells of picoliter volume. Monoclonal antibodies were localized and isolated into individual wells. Detection of two cardiac proteomic biomarkers has been demonstrated with this technology. The two proteins, C-reactive protein and NT-pro–brain natriuretic peptide (BNP), are associated with adverse cardiac outcomes in clinical samples when detected in the pg/mL concentration. The formation of the antibody-antigen binding complex occurs in individual wells. The membrane allows for robust separation among individual wells. This technology has the capability to achieve near real-time detection with improved sensitivity at 1 ag/mL for BNP and 1 fg/mL for CRP from human serum.
Nanomedicine: Nanotechnology, Biology and Medicine | 2016
Nandhinee Radha Shanmugam; Sriram Muthukumar; Anjan Panneer Selvam; Shalini Prasad
AIM Vertically oriented zinc oxide nanostructures based disposable diagnostic biosensor for detecting and quantifying levels of cardiac troponin-T from human serum has been developed. MATERIALS & METHODS The biosensors were designed by integrating hydrothermally grown zinc oxide nanostructures on glass and printed circuit board platforms, resulting in the generation of high-density nanostructure arrays with nanotextured zinc oxide based electrodes. The size, density and surface terminations of the nanostructures were leveraged toward achieving surface confinement of the target cTnT molecules on to the nanostructures. A combination of AC and DC spectroscopy was used to characterize the biosensor response to cTnT. RESULTS & CONCLUSION LOD of 0.1 pg/ml in human serum was achieved.
international conference of the ieee engineering in medicine and biology society | 2012
Anjan Panneer Selvam; Krishna Vattipalli; Shalini Prasad
An electrochemical approach towards identifying antigen - antibody binding interactions is studied by using a non-faradaic impedimetric sensor fabricated on a printed circuit board (PCB) chip. An electrical methodology for detecting protein interactions at ultra-low concentrations (in the femtogram/mL) regime has been demonstrated. Nanoporous alumina with pore diameter of 200nm and pore depth of 250 nm was used as the signal amplifying medium. Cardiac biomarker, brain natriuretic peptide (BNP) was used as the study marker in characterizing the sensors sensitivity. A sensitivity of 10 femtogram/mL was determined based on the impedimetric signal response. Sensitivity was determined through Nyquist plot analysis for the non-faradaic interactions of the protein biomolecules. This paper is the first demonstration of clinically relevant limit of detection with the BNP biomarker.
Clinica Chimica Acta | 2015
Thomas W. Barrett; Nandhinee Radha Shanmugam; Anjan Panneer Selvam; Steven C. Kazmierczak; Shalini Prasad
BACKGROUND Troponin is the preferred biomarker for diagnosing myocardial infarction. Point of care devices have not matched the sensitivity of laboratory-based methods for measuring troponin. The Nanomonitor is a novel point-of-care device that uses the change in electrical impedance that occurs when a biomarker binds to its antibody, which is then correlated to the concentration of the target biomarker. METHODS Performance characteristics of the Nanomonitor were evaluated and compared to a standard laboratory-based method. RESULTS The limit of detection of the Nanomonior for troponin T was 0.0088ng/l. Total imprecission was 2.38% and 0.85% at troponin T concentrations of 73ng/l and 1800ng/l. The functional sensitivity (10% coeffecient of variation) was 0.329ng/l. The linear regression had a slope of 0.996 (95% confidence interval, 0.991, 1.002), r=1.00, and an intercept of 15.88ng/l (95% confidence interval, -68.39ng/l, 100.15ng/l). The mean difference between the assays was -7.54ng/l, determined by Bland-Altman analysis. CONCLUSION The Nanomonitor preliminary results have favorable performance characteristics for detecting troponin T in patient blood, provide results in 15min, and are portable. More research is needed.
Journal of Laboratory Automation | 2014
Michael Jacobs; Anjan Panneer Selvam; Jon Engel Craven; Shalini Prasad
The technology presented in this study demonstrates the feasibility of integrating nanostructures onto the surface of an electrical platform to achieve enhanced detection of the cardiac biomarker, troponin-T. A polymer microcontact printing technique was modified using printed circuit boards as molds for the application of gold nanoparticles onto microelectrode-patterned glass substrates. The microelectrodes were designed to support electrical impedance spectroscopy measurements and fabricated using standard photolithography methods. Capture antibodies specific to troponin-T were functionalized onto the surface of gold nanoparticles by using a thiol-based cross-linking molecule. The antibody-conjugated gold nanoparticles were stamped onto the electrodes using a matching pattern imprinted onto an elastomeric mold. As a control to validate the efficacy of the nanotextured surface on the glass substrate, an electroplated printed circuit board was also used. The incorporation of gold nanoparticles showed significant amplification of the electro-ionic signals generated through binding of the antigen to its capture antibody. Enhanced sensitivity was demonstrated through detection of the target biomarker in the femtogram per milliliter range in buffer solution and biological media. In the absence of gold nanoparticles, the sensor demonstrated detection of troponin-T at higher concentration points. This study illustrates a robust method for developing a more sensitive, label-free biosensor.
Biosensors | 2016
Vikramshankar Kamakoti; Anjan Panneer Selvam; Nandhinee Radha Shanmugam; Sriram Muthukumar; Shalini Prasad
Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.