Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shalini Prasad is active.

Publication


Featured researches published by Shalini Prasad.


Scientific Reports | 2016

A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat.

Anjan Panneer Selvam; Sriram Muthukumar; Vikramshankar Kamakoti; Shalini Prasad

We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001–100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours.


Biosensors and Bioelectronics | 2014

Ultra-sensitive electrical immunoassay biosensors using nanotextured zinc oxide thin films on printed circuit board platforms.

Michael Jacobs; Sriram Muthukumar; Anjan Panneer Selvam; Jon Engel Craven; Shalini Prasad

This study demonstrates the development of nanotextured zinc oxide (ZnO) thin films sputter deposited on printed circuit boards (PCB) to enhance the capability in detecting low concentrations of the protein troponin-T. The presence of this particular biomarker in the bloodstream is a direct indicator of current and/or future risk of various forms of cardiovascular diseases. Electrical transduction through impedance spectroscopy was used to detect troponin-T functionalized immunoassays on nanotextured ZnO surfaces. Calibration of the immunoassay was performed by measuring the impedance changes resulting from the binding of increasing concentrations of troponin-T to the immobilized antibodies on the ZnO surface in (i) phosphate buffered saline (PBS) and (ii) human serum. The limit of detection achieved using this platform was 10 fg/mL and 100 fg/mL in PBS and human serum, respectively. Enhanced detection of troponin-T was found to correlate to the oxygen vacancies in the ZnO thin film. PCB was chosen as the substrate for ease of integration with microelectronic device manufacturing.


Biosensors and Bioelectronics | 2012

Nanoporous impedemetric biosensor for detection of trace atrazine from water samples

Pie Pichetsurnthorn; Krishna Vattipalli; Shalini Prasad

Trace contamination of ground water sources has been a problem ever since the introduction of high-soil-mobility pesticides, one such example is atrazine. In this paper we present a novel nanoporous portable bio-sensing device that can identify trace contamination of atrazine through a label-free assay. We have designed a pesticide sensor comprising of a nanoporous alumina membrane integrated with printed circuit board platform. Nanoporous alumina in the biosensor device generates a high density array of nanoscale confined spaces. By leveraging the size based immobilization of atrazine small molecules we have designed electrochemical impedance spectroscopy based biosensor to detect trace amounts of atrazine. We have calibrated the sensor using phosphate buffered saline and demonstrated trace detection from river and bottled drinking water samples. The limit of detection in all the three cases was in the femtogram/mL (fg/mL) (parts-per-trillion) regime with a dynamic range of detection spanning from 10 fg/mL to 1 ng/mL (0.01 ppt to 1 ppm). The selectivity of the device was tested using a competing pesticide; malathion and selectivity in detection was observed in the fg/mL regime in all the three cases.


Biosensors and Bioelectronics | 2017

Ultrasensitive nanostructure sensor arrays on flexible substrates for multiplexed and simultaneous electrochemical detection of a panel of cardiac biomarkers

Nandhinee Radha Shanmugam; Sriram Muthukumar; Shajee Chaudhry; Jonathan Anguiano; Shalini Prasad

Multiplexed detection of protein biomarkers offers new opportunities for early diagnosis and efficient treatment of complex diseases. Cardiovascular diseases (CVDs) has the highest mortality risk in USA and Europe with 15-20 million cases being reported annually. Cardiac Troponins (T and I) are well established protein biomarkers associated with heart muscle damage and point-of-care monitoring of both these two biomarkers has significant benefits on patient care. A flexible disposable electrochemical biosensor device comprising of vertically oriented zinc oxide (ZnO) nanostructures was developed for rapid and simultaneous screening of cardiac Troponin-I (cTnI) and cardiac-Troponin-T (cTnT) in a point-of-care sensor format. The biosensors were designed by selective hydrothermal growth of ZnO nanostructures onto the working electrodes of polyimide printed circuit board platforms, resulting in the generation of high density nanostructure ZnO arrays based electrodes. The size, density and surface terminations of the nanostructures were leveraged towards achieving surface confinement of the target cTnT and cTnI molecules on to the electrode surface. Multiplexing and simultaneous detection was achieved through sensor platform design comprising of arrays of Troponin functionalized ZnO nanostructure electrodes. The sensitivity and specificity of the biosensor was characterized using two types of electrochemical techniques; electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis on the same sensor platform to demonstrate multi-configurable modes. Limit of detection of 1pg/mL in human serum was achieved for both cTnI and cTnT. Cross reactivity analysis showed the selectivity of detecting cTnT and cTnI in human serum with wide dynamic range.


Clinical Implant Dentistry and Related Research | 2015

In Vitro Investigation of the Effect of Oral Bacteria in the Surface Oxidation of Dental Implants

Sathyanarayanan Sridhar; Thomas G. Wilson; Kelli L. Palmer; Pilar Valderrama; Mathew T. Mathew; Shalini Prasad; Michael Jacobs; Izabelle M. Gindri; Danieli C. Rodrigues

BACKGROUND Bacteria are major contributors to the rising number of dental implant failures. Inflammation secondary to bacterial colonization and bacterial biofilm is a major etiological factor associated with early and late implant failure (peri-implantitis). Even though there is a strong association between bacteria and bacterial biofilm and failure of dental implants, their effect on the surface of implants is yet not clear. PURPOSE To develop and establish an in vitro testing methodology to investigate the effect of early planktonic bacterial colonization on the surface of dental implants for a period of 60 days. MATERIALS AND METHODS Commercial dental implants were immersed in bacterial (Streptococcus mutans in brain-heart infusion broth) and control (broth only) media. Immersion testing was performed for a period of 60 days. During testing, optical density and pH of immersion media were monitored. The implant surface was surveyed with different microscopy techniques post-immersion. Metal ion release in solution was detected with an electrochemical impedance spectroscopy sensor platform called metal ion electrochemical biosensor (MIEB). RESULTS Bacteria grew in the implant-containing medium and provided a sustained acidic environment. Implants immersed in bacterial culture displayed various corrosion features, including surface discoloration, deformation of rough and smooth interfaces, pitting attack, and severe surface rusting. The surface features were confirmed by microscopic techniques, and metal particle generation was detected by the MIEB. CONCLUSION Implant surface oxidation occurred in bacteria-containing medium even at early stages of immersion (2 days). The incremental corrosion resulted in dissolution of metal ions and debris into the testing solution. Dissolution of metal ions and particles in the oral environment can trigger or contribute to the development of peri-implantitis at later stages.


Future Cardiology | 2013

Nanosensor electrical immunoassay for quantitative detection of NT-pro brain natriuretic peptide

Anjan Panneer Selvam; Shalini Prasad

AIM To demonstrate a label-free electrical immunoassay for profiling vascular biomarker N-terminal pro-brain natriuretic peptide (NT-proBNP) associated with improved cardiac risk prediction. MATERIALS & METHODS A high-density nanowell-based electrical immunoassay has been designed by integrating nanoporous aluminum oxide onto printed circuit board chips for the detection of NT-proBNP. The concentration of the biomarker is quantitatively determined by measuring impedance changes to the electrical double layer within the nanowells using electrochemical impedance spectroscopy. Detection sensitivity in the fg/ml range was obtained due to spatial confinement of the target biomarkers in size-matched nanowells. RESULTS & DISCUSSION Electrical immunoassay performance was determined for the detection of NT-proBNP in phosphate-buffered saline (PBS) and human serum (HS). The lower limit of detection for the sensor was observed to be 10 fg/ml in PBS and 500 fg/ml in HS. The upper limit of detection was observed to be 500 fg/ml in PBS and 500 ng/ml in HS. CONCLUSION A label-free technique for detection of NT-proBNP at clinically relevant concentrations for evaluating cardiac risk is demonstrated. High sensitivity and specificity, robust detection and low volume (100 µl) per assay project the technology to be a successful competitor to traditional ELISA-based techniques.


Journal of Laboratory Automation | 2013

Silicon nanosensor for diagnosis of Cardiovascular proteomic markers

Shalini Prasad; Anjan Panneer Selvam; Ravikiran Reddy; Adrian Love

A silicon nanosensor technology based on electrical impedance measurements has been developed for the detection of proteins. The nanosensor miniaturizes the high-density, low-volume multiwell plate concept. The scientific core of this technology lies in integrating nanoporous membranes with microfabricated chip platforms. This results in the conversion of individual pores into nanowells of picoliter volume. Monoclonal antibodies were localized and isolated into individual wells. Detection of two cardiac proteomic biomarkers has been demonstrated with this technology. The two proteins, C-reactive protein and NT-pro–brain natriuretic peptide (BNP), are associated with adverse cardiac outcomes in clinical samples when detected in the pg/mL concentration. The formation of the antibody-antigen binding complex occurs in individual wells. The membrane allows for robust separation among individual wells. This technology has the capability to achieve near real-time detection with improved sensitivity at 1 ag/mL for BNP and 1 fg/mL for CRP from human serum.


Scientific Reports | 2017

A new paradigm in sweat based wearable diagnostics biosensors using Room Temperature Ionic Liquids (RTILs)

Rujuta D. Munje; Sriram Muthukumar; Badrinath Jagannath; Shalini Prasad

Successful commercialization of wearable diagnostic sensors necessitates stability in detection of analytes over prolonged and continuous exposure to sweat. Challenges are primarily in ensuring target disease specific small analytes (i.e. metabolites, proteins, etc.) stability in complex sweat buffer with varying pH levels and composition over time. We present a facile approach to address these challenges using RTILs with antibody functionalized sensors on nanoporous, flexible polymer membranes. Temporal studies were performed using both infrared spectroscopic, dynamic light scattering, and impedimetric spectroscopy to demonstrate stability in detection of analytes, Interleukin-6 (IL-6) and Cortisol, from human sweat in RTILs. Temporal stability in sensor performance was performed as follows: (a) detection of target analytes after 0, 24, 48, 96, and 168 hours post-antibody sensor functionalization; and (b) continuous detection of target analytes post-antibody sensor functionalization. Limit of detection of IL-6 in human sweat was 0.2 pg/mL for 0–24 hours and 2 pg/mL for 24–48 hours post-antibody sensor functionalization. Continuous detection of IL-6 over 0.2–200 pg/mL in human sweat was demonstrated for a period of 10 hours post-antibody sensor functionalization. Furthermore, combinatorial detection of IL-6 and Cortisol in human sweat was established with minimal cross-talk for 0–48 hours post-antibody sensor functionalization.


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

Electrochemical nanostructured ZnO biosensor for ultrasensitive detection of cardiac troponin-T

Nandhinee Radha Shanmugam; Sriram Muthukumar; Anjan Panneer Selvam; Shalini Prasad

AIM Vertically oriented zinc oxide nanostructures based disposable diagnostic biosensor for detecting and quantifying levels of cardiac troponin-T from human serum has been developed. MATERIALS & METHODS The biosensors were designed by integrating hydrothermally grown zinc oxide nanostructures on glass and printed circuit board platforms, resulting in the generation of high-density nanostructure arrays with nanotextured zinc oxide based electrodes. The size, density and surface terminations of the nanostructures were leveraged toward achieving surface confinement of the target cTnT molecules on to the nanostructures. A combination of AC and DC spectroscopy was used to characterize the biosensor response to cTnT. RESULTS & CONCLUSION LOD of 0.1 pg/ml in human serum was achieved.


Environmental Science: Processes & Impacts | 2014

Nanochannel-based electrochemical sensor for the detection of pharmaceutical contaminants in water

Vinay J. Nagaraj; Michael Jacobs; Krishna Vattipalli; Venkata Praveen Annam; Shalini Prasad

Effective real-time monitoring is the key to understanding and tackling the issue of pharmaceutical contamination of water. This research demonstrates the utility of an alumina nanochannel-based electrochemical sensor platform for the detection of ibuprofen in water derived from various sources. Our results indicate that the sensor is highly sensitive with a limit of detection at 0.25 pg mL(-1). The novel sensor described here has potential for application as a simple, rapid, inexpensive and highly reliable method for real-time environmental water quality assessment.

Collaboration


Dive into the Shalini Prasad's collaboration.

Top Co-Authors

Avatar

Sriram Muthukumar

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Anjan Panneer Selvam

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rujuta D. Munje

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Michael Jacobs

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Badrinath Jagannath

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

David Kinnamon

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward W. Graef

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Krishna Vattipalli

University of Texas at Dallas

View shared research outputs
Researchain Logo
Decentralizing Knowledge