Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann-Ping Tsou is active.

Publication


Featured researches published by Ann-Ping Tsou.


Nucleic Acids Research | 2011

miRTarBase: a database curates experimentally validated microRNA–target interactions

Sheng-Da Hsu; Feng-Mao Lin; Wei-Yun Wu; Chao Liang; Wei-Chih Huang; Wen-Ling Chan; Wen-Ting Tsai; Goun-Zhou Chen; Chia-Jung Lee; Chih-Min Chiu; Chia-Hung Chien; Ming-Chia Wu; Chi-Ying F. Huang; Ann-Ping Tsou; Hsien-Da Huang

MicroRNAs (miRNAs), i.e. small non-coding RNA molecules (∼22 nt), can bind to one or more target sites on a gene transcript to negatively regulate protein expression, subsequently controlling many cellular mechanisms. A current and curated collection of miRNA–target interactions (MTIs) with experimental support is essential to thoroughly elucidating miRNA functions under different conditions and in different species. As a database, miRTarBase has accumulated more than 3500 MTIs by manually surveying pertinent literature after data mining of the text systematically to filter research articles related to functional studies of miRNAs. Generally, the collected MTIs are validated experimentally by reporter assays, western blot, or microarray experiments with overexpression or knockdown of miRNAs. miRTarBase curates 3576 experimentally verified MTIs between 657 miRNAs and 2297 target genes among 17 species. miRTarBase contains the largest amount of validated MTIs by comparing with other similar, previously developed databases. The MTIs collected in the miRTarBase can also provide a large amount of positive samples to develop computational methods capable of identifying miRNA–target interactions. miRTarBase is now available on http://miRTarBase.mbc.nctu.edu.tw/, and is updated frequently by continuously surveying research articles.


Journal of Clinical Investigation | 2012

MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis

Wei-Chih Tsai; Sheng-Da Hsu; Chu-Sui Hsu; Tsung-Ching Lai; Shu-Jen Chen; Roger Shen; Yi Huang; Hua-Chien Chen; Chien-Hsin Lee; Ting-Fen Tsai; Ming-Ta Hsu; Jaw-Ching Wu; Hsien-Da Huang; Ming-Shi Shiao; Michael Hsiao; Ann-Ping Tsou

MicroRNA-122 (miR-122), which accounts for 70% of the livers total miRNAs, plays a pivotal role in the liver. However, its intrinsic physiological roles remain largely undetermined. We demonstrated that mice lacking the gene encoding miR-122a (Mir122a) are viable but develop temporally controlled steatohepatitis, fibrosis, and hepatocellular carcinoma (HCC). These mice exhibited a striking disparity in HCC incidence based on sex, with a male-to-female ratio of 3.9:1, which recapitulates the disease incidence in humans. Impaired expression of microsomal triglyceride transfer protein (MTTP) contributed to steatosis, which was reversed by in vivo restoration of Mttp expression. We found that hepatic fibrosis onset can be partially attributed to the action of a miR-122a target, the Klf6 transcript. In addition, Mir122a(-/-) livers exhibited disruptions in a range of pathways, many of which closely resemble the disruptions found in human HCC. Importantly, the reexpression of miR-122a reduced disease manifestation and tumor incidence in Mir122a(-/-) mice. This study demonstrates that mice with a targeted deletion of the Mir122a gene possess several key phenotypes of human liver diseases, which provides a rationale for the development of a unique therapy for the treatment of chronic liver disease and HCC.


Hepatology | 2009

MicroRNA‐122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma

Wei-Chih Tsai; Paul Wei-Che Hsu; Tsung-Ching Lai; Gar-Yang Chau; Ching-Wen Lin; Chun-Ming Chen; Chien-Der Lin; Yu-Lun Liao; Jui-Ling Wang; Yat-Pang Chau; Ming-Ta Hsu; Michael Hsiao; Hsien-Da Huang; Ann-Ping Tsou

MicroRNAs (miRNAs), which are inhibitors of gene expression, participate in diverse biological functions and in carcinogenesis. In this study, we show that liver‐specific microRNA‐122 (miR‐122) is significantly down‐regulated in liver cancers with intrahepatic metastastasis and negatively regulates tumorigenesis. Restoration of miR‐122 in metastatic Mahlavu and SK‐HEP‐1 cells significantly reduced in vitro migration, invasion, and anchorage‐independent growth as well as in vivo tumorigenesis, angiogenesis, and intrahepatic metastasis in an orthotopic liver cancer model. Because an inverse expression pattern is often present between an miRNA and its target genes, we used a computational approach and identified multiple miR‐122 candidate target genes from two independent expression microarray datasets. Thirty‐two target genes were empirically verified, and this group of genes was enriched with genes regulating cell movement, cell morphology, cell‐cell signaling, and transcription. We further showed that one of the miR‐122 targets, ADAM17 (a disintegrin and metalloprotease 17) is involved in metastasis. Silencing of ADAM17 resulted in a dramatic reduction of in vitro migration, invasion, in vivo tumorigenesis, angiogenesis, and local invasion in the livers of nude mice, which is similar to that which occurs with the restoration of miR‐122. Conclusion: Our study suggests that miR‐122, a tumor suppressor microRNA affecting hepatocellular carcinoma intrahepatic metastasis by angiogenesis suppression, exerts some of its action via regulation of ADAM17. Restoration of miR‐122 has a far‐reaching effect on the cell. Using the concomitant down‐regulation of its targets, including ADAM17, a rational therapeutic strategy based on miR‐122 may prove to be beneficial for patients with hepatocellular carcinoma. (HEPATOLOGY 2009.)


Nucleic Acids Research | 2007

miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes

Sheng-Da Hsu; Chia-Huei Chu; Ann-Ping Tsou; Shu-Jen Chen; Hua-Chien Chen; Paul Wei-Che Hsu; Yung-Hao Wong; Yi-Hsuan Chen; Gian-Hung Chen; Hsien-Da Huang

MicroRNAs (miRNAs) are small non-coding RNA molecules that can negatively regulate gene expression and thus control numerous cellular mechanisms. This work develops a resource, miRNAMap 2.0, for collecting experimentally verified microRNAs and experimentally verified miRNA target genes in human, mouse, rat and other metazoan genomes. Three computational tools, miRanda, RNAhybrid and TargetScan, were employed to identify miRNA targets in 3′-UTR of genes as well as the known miRNA targets. Various criteria for filtering the putative miRNA targets are applied to reduce the false positive prediction rate of miRNA target sites. Additionally, miRNA expression profiles can provide valuable clues on the characteristics of miRNAs, including tissue specificity and differential expression in cancer/normal cell. Therefore, quantitative polymerase chain reaction experiments were performed to monitor the expression profiles of 224 human miRNAs in 18 major normal tissues in human. The negative correlation between the miRNA expression profile and the expression profiles of its target genes typically helps to elucidate the regulatory functions of the miRNA. The interface is also redesigned and enhanced. The miRNAMap 2.0 is now available at http://miRNAMap.mbc.nctu.edu.tw/.


Nucleic Acids Research | 2006

miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes

Paul Wei-Che Hsu; Hsien-Da Huang; Sheng-Da Hsu; Li-Zen Lin; Ann-Ping Tsou; Ching-Ping Tseng; Peter F. Stadler; Stefan Washietl; Ivo L. Hofacker

Recent work has demonstrated that microRNAs (miRNAs) are involved in critical biological processes by suppressing the translation of coding genes. This work develops an integrated database, miRNAMap, to store the known miRNA genes, the putative miRNA genes, the known miRNA targets and the putative miRNA targets. The known miRNA genes in four mammalian genomes such as human, mouse, rat and dog are obtained from miRBase, and experimentally validated miRNA targets are identified in a survey of the literature. Putative miRNA precursors were identified by RNAz, which is a non-coding RNA prediction tool based on comparative sequence analysis. The mature miRNA of the putative miRNA genes is accurately determined using a machine learning approach, mmiRNA. Then, miRanda was applied to predict the miRNA targets within the conserved regions in 3′-UTR of the genes in the four mammalian genomes. The miRNAMap also provides the expression profiles of the known miRNAs, cross-species comparisons, gene annotations and cross-links to other biological databases. Both textual and graphical web interface are provided to facilitate the retrieval of data from the miRNAMap. The database is freely available at .


Oncogene | 2008

Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma

Yu-Lun Liao; Sun Ym; Gar-Yang Chau; Yat-Pang Chau; Tsung-Ching Lai; Jui-Ling Wang; Horng Jt; Michael Hsiao; Ann-Ping Tsou

A comprehensive microarray analysis of hepatocellular carcinoma (HCC) revealed distinct synexpression patterns during intrahepatic metastasis. Recent evidence has demonstrated that synexpression group member genes are likely to be regulated by master control gene(s). Here we investigate the functions and gene regulation of the transcription factor SOX4 in intrahepatic metastatic HCC. SOX4 is important in tumor metastasis as RNAi knockdown reduces tumor cell migration, invasion, in vivo tumorigenesis and metastasis. A multifaceted approach integrating gene profiling, binding site computation and empirical verification by chromatin immunoprecipitation and gene ablation refined the consensus SOX4 binding motif and identified 32 binding loci in 31 genes with high confidence. RNAi knockdown of two SOX4 target genes, neuropilin 1 and semaphorin 3C, drastically reduced cell migration activity in HCC cell lines suggesting that SOX4 exerts some of its action via regulation of these two downstream targets. The discovery of 31 previously unidentified targets expands our knowledge of how SOX4 modulates HCC progression and implies a range of novel SOX4 functions. This integrated approach sets a paradigm whereby a subset of member genes from a synexpression group can be regulated by one master control gene and this is exemplified by SOX4 and advanced HCC.


Journal of Computational Chemistry | 2005

Incorporating hidden markov models for identifying protein kinase-specific phosphorylation sites

Hsien-Da Huang; Tzong-Yi Lee; Shih-Wei Tzeng; Li-Cheng Wu; Jorng-Tzong Horng; Ann-Ping Tsou; Kuan-Tsae Huang

Protein phosphorylation, which is an important mechanism in posttranslational modification, affects essential cellular processes such as metabolism, cell signaling, differentiation, and membrane transportation. Proteins are phosphorylated by a variety of protein kinases. In this investigation, we develop a novel tool to computationally predict catalytic kinase‐specific phosphorylation sites. The known phosphorylation sites from public domain data sources are categorized by their annotated protein kinases. Based on the concepts of profile Hidden Markov Models (HMM), computational models are trained from the kinase‐specific groups of phosphorylation sites. After evaluating the trained models, we select the model with highest accuracy in each kinase‐specific group and provide a Web‐based prediction tool for identifying protein phosphorylation sites. The main contribution here is that we have developed a kinase‐specific phosphorylation site prediction tool with both high sensitivity and specificity.


Oncogene | 2007

FLJ10540-elicited cell transformation is through the activation of PI3-kinase/AKT pathway.

Chung-Hsing Chen; Pei Jung Lu; Yeng-Yang Chen; Shu-Ling Fu; Kou-Juey Wu; Ann-Ping Tsou; Yung Chie Lee; T. C E Lin; Shih Lan Hsu; Wey-Jinq Lin; Chi-Ying F. Huang; Chen-Kung Chou

A significant challenge in the post-genomic era is how to prioritize differentially expressed and uncharacterized novel genes found in hepatocellular carcinoma (HCC) microarray profiling. One such category is cell cycle regulated genes that have only evolved in higher organisms but not in lower eukaryotic cells. Characterization of these genes may reveal some novel human cancer-specific abnormalities. A novel transcript, FLJ10540 was identified. FLJ10540 is overexpressed in HCC as examined by quantitative reverse transcription–polymerase chain reaction and immunohistochemistry. The patients with higher FLJ10540 expression had a poor survival than those with lower FLJ10540 expression. Functional characterization indicates that FLJ10540 displays a number of characteristics associated with an oncogene, including anchorage-independent growth, enhanced cell growth at low serum levels and induction of tumorigenesis in nude mice. FLJ10540-elicited cell transformation is mediated by activation of the phosphatidylinositol 3′-kinase (PI3K)/AKT pathway. Moreover, FLJ10540 forms a complex with PI3K and can activate PI3K activity, which provides a mechanistic basis for FLJ10540-mediated oncogenesis. Together, using a combination of bioinformatics searches and empirical data, we have identified a novel oncogene, FLJ10540, which is conserved only in higher organisms. The finding raises the possibility that FLJ10540 is a potential new therapeutic target for HCC treatment. These findings may contribute to the development of new therapeutic strategies that are able to block the PI3K/AKT pathway in cancer cells.


BMC Genomics | 2015

Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling

Sheng-Da Hsu; Hsi-Yuan Huang; Chih-Hung Chou; Yi-Ming Sun; Ming-Ta Hsu; Ann-Ping Tsou

BackgroundMicroRNAs (miRNAs) simultaneously target many transcripts through partial complementarity binding, and have emerged as a key type of post-transcriptional regulator for gene expression. How miRNA accomplishes its pleiotropic effects largely depends on its expression and its target repertoire. Previous studies discovered thousands of miRNAs and numerous miRNA target genes mainly through computation and prediction methods which produced high rates of false positive prediction. The development of Argonaute cross-linked immunoprecipitation coupled with high-throughput sequencing (CLIP-Seq) provides a system to effectively determine miRNA target genes. Likewise, the accuracy of dissecting the transcriptional regulation of miRNA genes has been greatly improved by chromatin immunoprecipitation of the transcription factors coupled with sequencing (ChIP-Seq). Elucidation of the miRNA target repertoire will provide an in-depth understanding of the functional roles of microRNA pathways. To reliably reconstruct a miRNA-mediated regulatory network, we established a computational framework using publicly available, sequence-based transcription factor-miRNA databases, including ChIPBase and TransmiR for the TF-miRNA interactions, along with miRNA-target databases, including miRTarBase, TarBase and starBase, for the miRNA-target interactions. We applied the computational framework to elucidate the miRNA-mediated regulatory network in the Mir122a-/- mouse model, which has an altered transcriptome and progressive liver disease.ResultsWe applied our computational framework to the expression profiles of miRNA/mRNA of Mir122a-/- mutant mice and wild-type mice. The miRNA-mediated network involves 40 curated TFs contributing to the aberrant expression of 65 miRNAs and 723 curated miRNA target genes, of which 56% was found in the differentially-expressed genes of Mir122a--mice. Hence, the regulatory network disclosed previously-known and also many previously-unidentified miRNA-mediated regulations in mutant mice. Moreover, we demonstrate that loss of imprinting at the chromosome 12qF1 region is associated with miRNA overexpression in human hepatocellular carcinoma and stem cells, suggesting initiation of precancerous changes in young mice deficient in miR-122. A group of 9 miRNAs was found to share miR-122 target genes, indicating synergy between miRNAs and target genes by way of multiplicity and cooperativity.ConclusionsThe study provides significant insight into miRNA-mediated regulatory networks. Based on experimentally verified data, this network is highly reliable and effective in revealing previously-undetermined disease-associated molecular mechanisms. This computational framework can be applied to explore the significant TF-miRNA-miRNA target interactions in any complex biological systems with high degrees of confidence.


international conference of the ieee engineering in medicine and biology society | 2006

Database to Dynamically Aid Probe Design for Virus Identification

Feng-Mao Lin; Hsien-Da Huang; Yu-Chung Chang; Ann-Ping Tsou; Pak-Leong Chan; Li-Cheng Wu; Meng-Feng Tsai; Jorng-Tzong Horng

Viral infection poses a major problem for public health, horticulture, and animal husbandry, possibly causing severe health crises and economic losses. Viral infections can be identified by the specific detection of viral sequences in many ways. The microarray approach not only tolerates sequence variations of newly evolved virus strains, but can also simultaneously diagnose many viral sequences. Many chips have so far been designed for clinical use. Most are designed for special purposes, such as typing enterovirus infection, and compare fewer than 30 different viral sequences. None considers primer design, increasing the likelihood of cross hybridization to similar sequences from other viruses. To prevent this possibility, this work establishes a platform and database that provides users with specific probes of all known viral genome sequences to facilitate the design of diagnostic chips. This work develops a system for designing probes online. A user can select any number of different viruses and set the experimental conditions such as melting temperature and length of probe. The system then returns the optimal sequences from the database. We have also developed a heuristic algorithm to calculate the probe correctness and show the correctness of the algorithm. (The system that supports probe design for identifying viruses has been published on our web page http://bioinfo.csie.ncu.edu.tw/.)

Collaboration


Dive into the Ann-Ping Tsou's collaboration.

Top Co-Authors

Avatar

Hsien-Da Huang

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Jorng-Tzong Horng

National Central University

View shared research outputs
Top Co-Authors

Avatar

Sheng-Da Hsu

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Chi-Ying F. Huang

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei-Chih Tsai

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Yi-Ming Sun

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Chu-Sui Hsu

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Feng-Mao Lin

National Central University

View shared research outputs
Top Co-Authors

Avatar

Li-Cheng Wu

National Central University

View shared research outputs
Researchain Logo
Decentralizing Knowledge