Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheng-Da Hsu is active.

Publication


Featured researches published by Sheng-Da Hsu.


Nucleic Acids Research | 2011

miRTarBase: a database curates experimentally validated microRNA–target interactions

Sheng-Da Hsu; Feng-Mao Lin; Wei-Yun Wu; Chao Liang; Wei-Chih Huang; Wen-Ling Chan; Wen-Ting Tsai; Goun-Zhou Chen; Chia-Jung Lee; Chih-Min Chiu; Chia-Hung Chien; Ming-Chia Wu; Chi-Ying F. Huang; Ann-Ping Tsou; Hsien-Da Huang

MicroRNAs (miRNAs), i.e. small non-coding RNA molecules (∼22 nt), can bind to one or more target sites on a gene transcript to negatively regulate protein expression, subsequently controlling many cellular mechanisms. A current and curated collection of miRNA–target interactions (MTIs) with experimental support is essential to thoroughly elucidating miRNA functions under different conditions and in different species. As a database, miRTarBase has accumulated more than 3500 MTIs by manually surveying pertinent literature after data mining of the text systematically to filter research articles related to functional studies of miRNAs. Generally, the collected MTIs are validated experimentally by reporter assays, western blot, or microarray experiments with overexpression or knockdown of miRNAs. miRTarBase curates 3576 experimentally verified MTIs between 657 miRNAs and 2297 target genes among 17 species. miRTarBase contains the largest amount of validated MTIs by comparing with other similar, previously developed databases. The MTIs collected in the miRTarBase can also provide a large amount of positive samples to develop computational methods capable of identifying miRNA–target interactions. miRTarBase is now available on http://miRTarBase.mbc.nctu.edu.tw/, and is updated frequently by continuously surveying research articles.


Journal of Clinical Investigation | 2012

MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis

Wei-Chih Tsai; Sheng-Da Hsu; Chu-Sui Hsu; Tsung-Ching Lai; Shu-Jen Chen; Roger Shen; Yi Huang; Hua-Chien Chen; Chien-Hsin Lee; Ting-Fen Tsai; Ming-Ta Hsu; Jaw-Ching Wu; Hsien-Da Huang; Ming-Shi Shiao; Michael Hsiao; Ann-Ping Tsou

MicroRNA-122 (miR-122), which accounts for 70% of the livers total miRNAs, plays a pivotal role in the liver. However, its intrinsic physiological roles remain largely undetermined. We demonstrated that mice lacking the gene encoding miR-122a (Mir122a) are viable but develop temporally controlled steatohepatitis, fibrosis, and hepatocellular carcinoma (HCC). These mice exhibited a striking disparity in HCC incidence based on sex, with a male-to-female ratio of 3.9:1, which recapitulates the disease incidence in humans. Impaired expression of microsomal triglyceride transfer protein (MTTP) contributed to steatosis, which was reversed by in vivo restoration of Mttp expression. We found that hepatic fibrosis onset can be partially attributed to the action of a miR-122a target, the Klf6 transcript. In addition, Mir122a(-/-) livers exhibited disruptions in a range of pathways, many of which closely resemble the disruptions found in human HCC. Importantly, the reexpression of miR-122a reduced disease manifestation and tumor incidence in Mir122a(-/-) mice. This study demonstrates that mice with a targeted deletion of the Mir122a gene possess several key phenotypes of human liver diseases, which provides a rationale for the development of a unique therapy for the treatment of chronic liver disease and HCC.


Nucleic Acids Research | 2014

miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions

Sheng-Da Hsu; Yu-Ting Tseng; Sirjana Shrestha; Yu-Ling Lin; Anas Khaleel; Chih-Hung Chou; Chao-Fang Chu; Hsi-Yuan Huang; Ching-Min Lin; Shu-Yi Ho; Ting-Yan Jian; Feng-Mao Lin; Tzu-Hao Chang; Shun-Long Weng; Kuang-Wen Liao; I-En Liao; Chun-Chi Liu; Hsien-Da Huang

MicroRNAs (miRNAs) are small non-coding RNA molecules capable of negatively regulating gene expression to control many cellular mechanisms. The miRTarBase database (http://mirtarbase.mbc.nctu.edu.tw/) provides the most current and comprehensive information of experimentally validated miRNA-target interactions. The database was launched in 2010 with data sources for >100 published studies in the identification of miRNA targets, molecular networks of miRNA targets and systems biology, and the current release (2013, version 4) includes significant expansions and enhancements over the initial release (2010, version 1). This article reports the current status of and recent improvements to the database, including (i) a 14-fold increase to miRNA-target interaction entries, (ii) a miRNA-target network, (iii) expression profile of miRNA and its target gene, (iv) miRNA target-associated diseases and (v) additional utilities including an upgrade reminder and an error reporting/user feedback system.


Nucleic Acids Research | 2016

miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database

Chih-Hung Chou; Nai-Wen Chang; Sirjana Shrestha; Sheng-Da Hsu; Yu-Ling Lin; Wei-Hsiang Lee; Chi-Dung Yang; Hsiao-Chin Hong; Ting-Yen Wei; Siang-Jyun Tu; Tzi-Ren Tsai; Shu-Yi Ho; Ting-Yan Jian; Hsin-Yi Wu; Pin-Rong Chen; Nai-Chieh Lin; Hsin-Tzu Huang; Tzu-Ling Yang; Chung-Yuan Pai; Chun-San Tai; Wen-Liang Chen; Chia-Yen Huang; Chun-Chi Liu; Shun-Long Weng; Kuang-Wen Liao; Wen-Lian Hsu; Hsien-Da Huang

MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. This study describes an update of the miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) that provides information about experimentally validated miRNA-target interactions (MTIs). The latest update of the miRTarBase expanded it to identify systematically Argonaute-miRNA-RNA interactions from 138 crosslinking and immunoprecipitation sequencing (CLIP-seq) data sets that were generated by 21 independent studies. The database contains 4966 articles, 7439 strongly validated MTIs (using reporter assays or western blots) and 348 007 MTIs from CLIP-seq. The number of MTIs in the miRTarBase has increased around 7-fold since the 2014 miRTarBase update. The miRNA and gene expression profiles from The Cancer Genome Atlas (TCGA) are integrated to provide an effective overview of this exponential growth in the miRNA experimental data. These improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.


Nucleic Acids Research | 2007

miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes

Sheng-Da Hsu; Chia-Huei Chu; Ann-Ping Tsou; Shu-Jen Chen; Hua-Chien Chen; Paul Wei-Che Hsu; Yung-Hao Wong; Yi-Hsuan Chen; Gian-Hung Chen; Hsien-Da Huang

MicroRNAs (miRNAs) are small non-coding RNA molecules that can negatively regulate gene expression and thus control numerous cellular mechanisms. This work develops a resource, miRNAMap 2.0, for collecting experimentally verified microRNAs and experimentally verified miRNA target genes in human, mouse, rat and other metazoan genomes. Three computational tools, miRanda, RNAhybrid and TargetScan, were employed to identify miRNA targets in 3′-UTR of genes as well as the known miRNA targets. Various criteria for filtering the putative miRNA targets are applied to reduce the false positive prediction rate of miRNA target sites. Additionally, miRNA expression profiles can provide valuable clues on the characteristics of miRNAs, including tissue specificity and differential expression in cancer/normal cell. Therefore, quantitative polymerase chain reaction experiments were performed to monitor the expression profiles of 224 human miRNAs in 18 major normal tissues in human. The negative correlation between the miRNA expression profile and the expression profiles of its target genes typically helps to elucidate the regulatory functions of the miRNA. The interface is also redesigned and enhanced. The miRNAMap 2.0 is now available at http://miRNAMap.mbc.nctu.edu.tw/.


Nucleic Acids Research | 2006

miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes

Paul Wei-Che Hsu; Hsien-Da Huang; Sheng-Da Hsu; Li-Zen Lin; Ann-Ping Tsou; Ching-Ping Tseng; Peter F. Stadler; Stefan Washietl; Ivo L. Hofacker

Recent work has demonstrated that microRNAs (miRNAs) are involved in critical biological processes by suppressing the translation of coding genes. This work develops an integrated database, miRNAMap, to store the known miRNA genes, the putative miRNA genes, the known miRNA targets and the putative miRNA targets. The known miRNA genes in four mammalian genomes such as human, mouse, rat and dog are obtained from miRBase, and experimentally validated miRNA targets are identified in a survey of the literature. Putative miRNA precursors were identified by RNAz, which is a non-coding RNA prediction tool based on comparative sequence analysis. The mature miRNA of the putative miRNA genes is accurately determined using a machine learning approach, mmiRNA. Then, miRanda was applied to predict the miRNA targets within the conserved regions in 3′-UTR of the genes in the four mammalian genomes. The miRNAMap also provides the expression profiles of the known miRNAs, cross-species comparisons, gene annotations and cross-links to other biological databases. Both textual and graphical web interface are provided to facilitate the retrieval of data from the miRNAMap. The database is freely available at .


Nucleic Acids Research | 2016

CircNet: a database of circular RNAs derived from transcriptome sequencing data

Yu-Chen Liu; Jianrong Li; Chuan-Hu Sun; Erik Andrews; Rou-Fang Chao; Feng-Mao Lin; Shun-Long Weng; Sheng-Da Hsu; Chieh-Chen Huang; Chao Cheng; Chun-Chi Liu; Hsien-Da Huang

Circular RNAs (circRNAs) represent a new type of regulatory noncoding RNA that only recently has been identified and cataloged. Emerging evidence indicates that circRNAs exert a new layer of post-transcriptional regulation of gene expression. In this study, we utilized transcriptome sequencing datasets to systematically identify the expression of circRNAs (including known and newly identified ones by our pipeline) in 464 RNA-seq samples, and then constructed the CircNet database (http://circnet.mbc.nctu.edu.tw/) that provides the following resources: (i) novel circRNAs, (ii) integrated miRNA-target networks, (iii) expression profiles of circRNA isoforms, (iv) genomic annotations of circRNA isoforms (e.g. 282 948 exon positions), and (v) sequences of circRNA isoforms. The CircNet database is to our knowledge the first public database that provides tissue-specific circRNA expression profiles and circRNA–miRNA-gene regulatory networks. It not only extends the most up to date catalog of circRNAs but also provides a thorough expression analysis of both previously reported and novel circRNAs. Furthermore, it generates an integrated regulatory network that illustrates the regulation between circRNAs, miRNAs and genes.


Cellular and Molecular Life Sciences | 2012

Let-7b is a novel regulator of hepatitis C virus replication.

Ju-Chien Cheng; Yung-Ju Yeh; Ching-Ping Tseng; Sheng-Da Hsu; Yu-Ling Chang; Naoya Sakamoto; Hsien-Da Huang

The non-coding microRNA (miRNA) is involved in the regulation of hepatitis C virus (HCV) infection and offers an alternative target for developing anti-HCV agent. In this study, we aim to identify novel cellular miRNAs that directly target the HCV genome with anti-HCV therapeutic potential. Bioinformatic analyses were performed to unveil liver-abundant miRNAs with predicted target sequences on HCV genome. Various cell-based systems confirmed that let-7b plays a negative role in HCV expression. In particular, let-7b suppressed HCV replicon activity and down-regulated HCV accumulation leading to reduced infectivity of HCVcc. Mutational analysis identified let-7b binding sites at the coding sequences of NS5B and 5′-UTR of HCV genome that were conserved among various HCV genotypes. We further demonstrated that the underlying mechanism for let-7b-mediated suppression of HCV RNA accumulation was not dependent on inhibition of HCV translation. Let-7b and IFNα-2a also elicited a synergistic inhibitory effect on HCV infection. Together, let-7b represents a novel cellular miRNA that targets the HCV genome and elicits anti-HCV activity. This study thereby sheds new insight into understanding the role of host miRNAs in HCV pathogenesis and to developing a potential anti-HCV therapeutic strategy.


Nucleic Acids Research | 2007

ViTa: prediction of host microRNAs targets on viruses

Paul Wei-Che Hsu; Li-Zen Lin; Sheng-Da Hsu; Justin Bo Kai Hsu; Hsien-Da Huang

MicroRNAs (miRNAs) are involved in various biological processes by suppressing gene expression. A recent work has indicated that host miRNAs are also capable of regulating viral gene expression by targeting the virus genomes. To investigate regulatory relationships between host miRNAs and related viruses, we present a novel database, namely ViTa, to curate the known virus miRNA genes and the known/putative target sites of human, mice, rat and chicken miRNAs. Known miRNAs are obtained from miRBase. Virus data are collected and referred from ICTVdB, VBRC and VirGen. Experimentally validated miRNA targets on viruses were derived from literatures. Then, miRanda and TargetScan are utilized to predict miRNA targets within virus genomes. ViTa also provides the virus annotations, virus-infected tissues and tissue specificity of host miRNAs. This work also facilitates the comparisons between subtypes of viruses, such as influenza viruses, human liver viruses and the conserved regions between viruses. Both textual and graphical web interfaces are provided to facilitate the data retrieves in the ViTa database. The database is now freely available at .


Nucleic Acids Research | 2015

MethHC: a database of DNA methylation and gene expression in human cancer

Wei-Yun Huang; Sheng-Da Hsu; Hsi-Yuan Huang; Yi-Ming Sun; Chih-Hung Chou; Shun-Long Weng; Hsien-Da Huang

We present MethHC (http://MethHC.mbc.nctu.edu.tw), a database comprising a systematic integration of a large collection of DNA methylation data and mRNA/microRNA expression profiles in human cancer. DNA methylation is an important epigenetic regulator of gene transcription, and genes with high levels of DNA methylation in their promoter regions are transcriptionally silent. Increasing numbers of DNA methylation and mRNA/microRNA expression profiles are being published in different public repositories. These data can help researchers to identify epigenetic patterns that are important for carcinogenesis. MethHC integrates data such as DNA methylation, mRNA expression, DNA methylation of microRNA gene and microRNA expression to identify correlations between DNA methylation and mRNA/microRNA expression from TCGA (The Cancer Genome Atlas), which includes 18 human cancers in more than 6000 samples, 6548 microarrays and 12 567 RNA sequencing data.

Collaboration


Dive into the Sheng-Da Hsu's collaboration.

Top Co-Authors

Avatar

Hsien-Da Huang

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Chih-Hung Chou

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Ann-Ping Tsou

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Shun-Long Weng

Mackay Memorial Hospital

View shared research outputs
Top Co-Authors

Avatar

Wei-Yun Huang

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Hsi-Yuan Huang

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Sirjana Shrestha

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

S. Y. Huang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Chun-Chi Liu

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Feng-Mao Lin

National Central University

View shared research outputs
Researchain Logo
Decentralizing Knowledge