Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsien-Da Huang is active.

Publication


Featured researches published by Hsien-Da Huang.


Nucleic Acids Research | 2011

miRTarBase: a database curates experimentally validated microRNA–target interactions

Sheng-Da Hsu; Feng-Mao Lin; Wei-Yun Wu; Chao Liang; Wei-Chih Huang; Wen-Ling Chan; Wen-Ting Tsai; Goun-Zhou Chen; Chia-Jung Lee; Chih-Min Chiu; Chia-Hung Chien; Ming-Chia Wu; Chi-Ying F. Huang; Ann-Ping Tsou; Hsien-Da Huang

MicroRNAs (miRNAs), i.e. small non-coding RNA molecules (∼22 nt), can bind to one or more target sites on a gene transcript to negatively regulate protein expression, subsequently controlling many cellular mechanisms. A current and curated collection of miRNA–target interactions (MTIs) with experimental support is essential to thoroughly elucidating miRNA functions under different conditions and in different species. As a database, miRTarBase has accumulated more than 3500 MTIs by manually surveying pertinent literature after data mining of the text systematically to filter research articles related to functional studies of miRNAs. Generally, the collected MTIs are validated experimentally by reporter assays, western blot, or microarray experiments with overexpression or knockdown of miRNAs. miRTarBase curates 3576 experimentally verified MTIs between 657 miRNAs and 2297 target genes among 17 species. miRTarBase contains the largest amount of validated MTIs by comparing with other similar, previously developed databases. The MTIs collected in the miRTarBase can also provide a large amount of positive samples to develop computational methods capable of identifying miRNA–target interactions. miRTarBase is now available on http://miRTarBase.mbc.nctu.edu.tw/, and is updated frequently by continuously surveying research articles.


Journal of Clinical Investigation | 2012

MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis

Wei-Chih Tsai; Sheng-Da Hsu; Chu-Sui Hsu; Tsung-Ching Lai; Shu-Jen Chen; Roger Shen; Yi Huang; Hua-Chien Chen; Chien-Hsin Lee; Ting-Fen Tsai; Ming-Ta Hsu; Jaw-Ching Wu; Hsien-Da Huang; Ming-Shi Shiao; Michael Hsiao; Ann-Ping Tsou

MicroRNA-122 (miR-122), which accounts for 70% of the livers total miRNAs, plays a pivotal role in the liver. However, its intrinsic physiological roles remain largely undetermined. We demonstrated that mice lacking the gene encoding miR-122a (Mir122a) are viable but develop temporally controlled steatohepatitis, fibrosis, and hepatocellular carcinoma (HCC). These mice exhibited a striking disparity in HCC incidence based on sex, with a male-to-female ratio of 3.9:1, which recapitulates the disease incidence in humans. Impaired expression of microsomal triglyceride transfer protein (MTTP) contributed to steatosis, which was reversed by in vivo restoration of Mttp expression. We found that hepatic fibrosis onset can be partially attributed to the action of a miR-122a target, the Klf6 transcript. In addition, Mir122a(-/-) livers exhibited disruptions in a range of pathways, many of which closely resemble the disruptions found in human HCC. Importantly, the reexpression of miR-122a reduced disease manifestation and tumor incidence in Mir122a(-/-) mice. This study demonstrates that mice with a targeted deletion of the Mir122a gene possess several key phenotypes of human liver diseases, which provides a rationale for the development of a unique therapy for the treatment of chronic liver disease and HCC.


Nucleic Acids Research | 2014

miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions

Sheng-Da Hsu; Yu-Ting Tseng; Sirjana Shrestha; Yu-Ling Lin; Anas Khaleel; Chih-Hung Chou; Chao-Fang Chu; Hsi-Yuan Huang; Ching-Min Lin; Shu-Yi Ho; Ting-Yan Jian; Feng-Mao Lin; Tzu-Hao Chang; Shun-Long Weng; Kuang-Wen Liao; I-En Liao; Chun-Chi Liu; Hsien-Da Huang

MicroRNAs (miRNAs) are small non-coding RNA molecules capable of negatively regulating gene expression to control many cellular mechanisms. The miRTarBase database (http://mirtarbase.mbc.nctu.edu.tw/) provides the most current and comprehensive information of experimentally validated miRNA-target interactions. The database was launched in 2010 with data sources for >100 published studies in the identification of miRNA targets, molecular networks of miRNA targets and systems biology, and the current release (2013, version 4) includes significant expansions and enhancements over the initial release (2010, version 1). This article reports the current status of and recent improvements to the database, including (i) a 14-fold increase to miRNA-target interaction entries, (ii) a miRNA-target network, (iii) expression profile of miRNA and its target gene, (iv) miRNA target-associated diseases and (v) additional utilities including an upgrade reminder and an error reporting/user feedback system.


Hepatology | 2009

MicroRNA‐122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma

Wei-Chih Tsai; Paul Wei-Che Hsu; Tsung-Ching Lai; Gar-Yang Chau; Ching-Wen Lin; Chun-Ming Chen; Chien-Der Lin; Yu-Lun Liao; Jui-Ling Wang; Yat-Pang Chau; Ming-Ta Hsu; Michael Hsiao; Hsien-Da Huang; Ann-Ping Tsou

MicroRNAs (miRNAs), which are inhibitors of gene expression, participate in diverse biological functions and in carcinogenesis. In this study, we show that liver‐specific microRNA‐122 (miR‐122) is significantly down‐regulated in liver cancers with intrahepatic metastastasis and negatively regulates tumorigenesis. Restoration of miR‐122 in metastatic Mahlavu and SK‐HEP‐1 cells significantly reduced in vitro migration, invasion, and anchorage‐independent growth as well as in vivo tumorigenesis, angiogenesis, and intrahepatic metastasis in an orthotopic liver cancer model. Because an inverse expression pattern is often present between an miRNA and its target genes, we used a computational approach and identified multiple miR‐122 candidate target genes from two independent expression microarray datasets. Thirty‐two target genes were empirically verified, and this group of genes was enriched with genes regulating cell movement, cell morphology, cell‐cell signaling, and transcription. We further showed that one of the miR‐122 targets, ADAM17 (a disintegrin and metalloprotease 17) is involved in metastasis. Silencing of ADAM17 resulted in a dramatic reduction of in vitro migration, invasion, in vivo tumorigenesis, angiogenesis, and local invasion in the livers of nude mice, which is similar to that which occurs with the restoration of miR‐122. Conclusion: Our study suggests that miR‐122, a tumor suppressor microRNA affecting hepatocellular carcinoma intrahepatic metastasis by angiogenesis suppression, exerts some of its action via regulation of ADAM17. Restoration of miR‐122 has a far‐reaching effect on the cell. Using the concomitant down‐regulation of its targets, including ADAM17, a rational therapeutic strategy based on miR‐122 may prove to be beneficial for patients with hepatocellular carcinoma. (HEPATOLOGY 2009.)


Nucleic Acids Research | 2016

miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database

Chih-Hung Chou; Nai-Wen Chang; Sirjana Shrestha; Sheng-Da Hsu; Yu-Ling Lin; Wei-Hsiang Lee; Chi-Dung Yang; Hsiao-Chin Hong; Ting-Yen Wei; Siang-Jyun Tu; Tzi-Ren Tsai; Shu-Yi Ho; Ting-Yan Jian; Hsin-Yi Wu; Pin-Rong Chen; Nai-Chieh Lin; Hsin-Tzu Huang; Tzu-Ling Yang; Chung-Yuan Pai; Chun-San Tai; Wen-Liang Chen; Chia-Yen Huang; Chun-Chi Liu; Shun-Long Weng; Kuang-Wen Liao; Wen-Lian Hsu; Hsien-Da Huang

MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. This study describes an update of the miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) that provides information about experimentally validated miRNA-target interactions (MTIs). The latest update of the miRTarBase expanded it to identify systematically Argonaute-miRNA-RNA interactions from 138 crosslinking and immunoprecipitation sequencing (CLIP-seq) data sets that were generated by 21 independent studies. The database contains 4966 articles, 7439 strongly validated MTIs (using reporter assays or western blots) and 348 007 MTIs from CLIP-seq. The number of MTIs in the miRTarBase has increased around 7-fold since the 2014 miRTarBase update. The miRNA and gene expression profiles from The Cancer Genome Atlas (TCGA) are integrated to provide an effective overview of this exponential growth in the miRNA experimental data. These improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.


Science | 2013

Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways

Arne Weiberg; Ming Wang; Feng-Mao Lin; Hongwei Zhao; Zhihong Zhang; Isgouhi Kaloshian; Hsien-Da Huang; Hailing Jin

RNA on the Attack Plant microbial pathogens often work through protein effectors that are delivered into the plant cells to disrupt critical cellular functions. Weiberg et al. (p. 118; see the Perspective by Baulcombe) have now found that small RNAs (sRNAs) of the fungus Botrytis cinerea can play a similar role. After fungal infection of tomato or Arabidopsis leaves, the plant cells contained a suite of fungal-derived sRNAs. Three sRNAs were found to bind to the plants own Argonaute protein, thereby silencing the plants fungal defense genes. A pathogenic fungus delivers small RNA molecules to disable gene regulatory systems in the target plant. [Also see Perspective by Baulcombe] Botrytis cinerea, the causative agent of gray mold disease, is an aggressive fungal pathogen that infects more than 200 plant species. Here, we show that some B. cinerea small RNAs (Bc-sRNAs) can silence Arabidopsis and tomato genes involved in immunity. These Bc-sRNAs hijack the host RNA interference (RNAi) machinery by binding to Arabidopsis Argonaute 1 (AGO1) and selectively silencing host immunity genes. The Arabidopsis ago1 mutant exhibits reduced susceptibility to B. cinerea, and the B. cinerea dcl1 dcl2 double mutant that can no longer produce these Bc-sRNAs displays reduced pathogenicity on Arabidopsis and tomato. Thus, this fungal pathogen transfers “virulent” sRNA effectors into host plant cells to suppress host immunity and achieve infection, which demonstrates a naturally occurring cross-kingdom RNAi as an advanced virulence mechanism.


Nucleic Acids Research | 2005

KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites

Hsien-Da Huang; Tzong-Yi Lee; Shih-Wei Tzeng; Jorng-Tzong Horng

KinasePhos is a novel web server for computationally identifying catalytic kinase-specific phosphorylation sites. The known phosphorylation sites from public domain data sources are categorized by their annotated protein kinases. Based on the profile hidden Markov model, computational models are learned from the kinase-specific groups of the phosphorylation sites. After evaluating the learned models, the model with highest accuracy was selected from each kinase-specific group, for use in a web-based prediction tool for identifying protein phosphorylation sites. Therefore, this work developed a kinase-specific phosphorylation site prediction tool with both high sensitivity and specificity. The prediction tool is freely available at .


Nucleic Acids Research | 2007

KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns

Yung-Hao Wong; Tzong-Yi Lee; Han-Kuen Liang; Chia-Mao Huang; Ting-Yuan Wang; Yi-Huan Yang; Chia-Huei Chu; Hsien-Da Huang; Ming-Tat Ko; Jenn-Kang Hwang

Due to the importance of protein phosphorylation in cellular control, many researches are undertaken to predict the kinase-specific phosphorylation sites. Referred to our previous work, KinasePhos 1.0, incorporated profile hidden Markov model (HMM) with flanking residues of the kinase-specific phosphorylation sites. Herein, a new web server, KinasePhos 2.0, incorporates support vector machines (SVM) with the protein sequence profile and protein coupling pattern, which is a novel feature used for identifying phosphorylation sites. The coupling pattern [XdZ] denotes the amino acid coupling-pattern of amino acid types X and Z that are separated by d amino acids. The differences or quotients of coupling strength CXdZ between the positive set of phosphorylation sites and the background set of whole protein sequences from Swiss-Prot are computed to determine the number of coupling patterns for training SVM models. After the evaluation based on k-fold cross-validation and Jackknife cross-validation, the average predictive accuracy of phosphorylated serine, threonine, tyrosine and histidine are 90, 93, 88 and 93%, respectively. KinasePhos 2.0 performs better than other tools previously developed. The proposed web server is freely available at http://KinasePhos2.mbc.nctu.edu.tw/.


Molecular Cell | 2011

Arabidopsis Argonaute 2 Regulates Innate Immunity via miRNA393*-Mediated Silencing of a Golgi-Localized SNARE Gene, MEMB12

Xiaoming Zhang; Hongwei Zhao; Shang Gao; Wei-Chi Wang; Surekha Katiyar-Agarwal; Hsien-Da Huang; Natasha V. Raikhel; Hailing Jin

Argonaute (AGO) proteins are critical components of RNA silencing pathways that bind small RNAs and mediate gene silencing at their target sites. We found that Arabidopsis AGO2 is highly induced by the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Further genetic analysis demonstrated that AGO2 functions in antibacterial immunity. One abundant species of AGO2-bound small RNA is miR393b(∗), which targets a Golgi-localized SNARE gene, MEMB12. Pst infection downregulates MEMB12 in a miR393b(∗)-dependent manner. Loss of function of MEMB12, but not SYP61, another intracellular SNARE, leads to increased exocytosis of an antimicrobial pathogenesis-related protein, PR1. Overexpression of miR393b(∗) resembles memb12 mutant in resistance responses. Thus, AGO2 functions in antibacterial immunity by binding miR393b(∗) to modulate exocytosis of antimicrobial PR proteins via MEMB12. Since miR393 also contributes to antibacterial responses, miR393(∗)/miR393 represent an example of a miRNA(∗)/miRNA pair that functions in immunity through two distinct AGOs: miR393(∗) through AGO2 and miR393 through AGO1.


BMC Genomics | 2008

PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups

Wen Chi Chang; Tzong-Yi Lee; Hsien-Da Huang; His Yuan Huang; Rong Long Pan

BackgroundThe elucidation of transcriptional regulation in plant genes is important area of research for plant scientists, following the mapping of various plant genomes, such as A. thaliana, O. sativa and Z. mays. A variety of bioinformatic servers or databases of plant promoters have been established, although most have been focused only on annotating transcription factor binding sites in a single gene and have neglected some important regulatory elements (tandem repeats and CpG/CpNpG islands) in promoter regions. Additionally, the combinatorial interaction of transcription factors (TFs) is important in regulating the gene group that is associated with the same expression pattern. Therefore, a tool for detecting the co-regulation of transcription factors in a group of gene promoters is required.ResultsThis study develops a database-assisted system, PlantPAN (Plant Promoter Analysis Navigator), for recognizing combinatorial cis-regulatory elements with a distance constraint in sets of plant genes. The system collects the plant transcription factor binding profiles from PLACE, TRANSFAC (public release 7.0), AGRIS, and JASPER databases and allows users to input a group of gene IDs or promoter sequences, enabling the co-occurrence of combinatorial transcription factor binding sites (TFBSs) within a defined distance (20 bp to 200 bp) to be identified. Furthermore, the new resource enables other regulatory features in a plant promoter, such as CpG/CpNpG islands and tandem repeats, to be displayed. The regulatory elements in the conserved regions of the promoters across homologous genes are detected and presented.ConclusionIn addition to providing a user-friendly input/output interface, PlantPAN has numerous advantages in the analysis of a plant promoter. Several case studies have established the effectiveness of PlantPAN. This novel analytical resource is now freely available at http://PlantPAN.mbc.nctu.edu.tw.

Collaboration


Dive into the Hsien-Da Huang's collaboration.

Top Co-Authors

Avatar

Jorng-Tzong Horng

National Central University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng-Mao Lin

National Central University

View shared research outputs
Top Co-Authors

Avatar

Tzu Hao Chang

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Chih-Hung Chou

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Sheng-Da Hsu

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Ann-Ping Tsou

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Hsi-Yuan Huang

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Chi-Dung Yang

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Wen Chi Chang

National Cheng Kung University

View shared research outputs
Researchain Logo
Decentralizing Knowledge