Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann S. Hammonds is active.

Publication


Featured researches published by Ann S. Hammonds.


Nature | 2011

The developmental transcriptome of Drosophila melanogaster

Brenton R. Graveley; Angela N. Brooks; Joseph W. Carlson; Michael O. Duff; Jane M. Landolin; Li Min Yang; Carlo G. Artieri; Marijke J. van Baren; Nathan Boley; Benjamin W. Booth; James B. Brown; Lucy Cherbas; Carrie A. Davis; Alexander Dobin; Renhua Li; Wei Lin; John H. Malone; Nicolas R Mattiuzzo; David S. Miller; David Sturgill; Brian B. Tuch; Chris Zaleski; Dayu Zhang; Marco Blanchette; Sandrine Dudoit; Brian D. Eads; Richard E. Green; Ann S. Hammonds; Lichun Jiang; Phil Kapranov

Drosophila melanogaster is one of the most well studied genetic model organisms, nonetheless its genome still contains unannotated coding and non-coding genes, transcripts, exons, and RNA editing sites. Full discovery and annotation are prerequisites for understanding how the regulation of transcription, splicing, and RNA editing directs development of this complex organism. We used RNA-Seq, tiling microarrays, and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. Together, these data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Tools for neuroanatomy and neurogenetics in Drosophila

Barret D. Pfeiffer; Arnim Jenett; Ann S. Hammonds; Teri-T B. Ngo; Sima Misra; Christine Murphy; Audra Scully; Joseph W. Carlson; Kenneth H. Wan; Todd R. Laverty; Christopher J. Mungall; Rob Svirskas; James T. Kadonaga; Chris Q. Doe; Michael B. Eisen; Susan E. Celniker; Gerald M. Rubin

We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of genes thought to have patterned expression in the adult brain were inserted into a defined genomic location by site-specific recombination. These fragments were then assayed for their ability to function as transcriptional enhancers in conjunction with a synthetic core promoter designed to work with a wide variety of enhancer types. An analysis of 44 fragments from four genes found that >80% drive expression patterns in the brain; the observed patterns were, on average, comprised of <100 cells. Our results suggest that the D. melanogaster genome contains >50,000 enhancers and that multiple enhancers drive distinct subsets of expression of a gene in each tissue and developmental stage. We expect that these lines will be valuable tools for neuroanatomy as well as for the elucidation of neuronal circuits and information flow in the fly brain.


Nature | 2014

Diversity and dynamics of the Drosophila transcriptome

James B. Brown; Nathan Boley; Robert C. Eisman; Gemma May; Marcus H. Stoiber; Michael O. Duff; Ben W. Booth; Jiayu Wen; Soo Park; Ana Maria Suzuki; Kenneth H. Wan; Charles Yu; Dayu Zhang; Joseph W. Carlson; Lucy Cherbas; Brian D. Eads; David J. Miller; Keithanne Mockaitis; Johnny Roberts; Carrie A. Davis; Erwin Frise; Ann S. Hammonds; Sara H. Olson; Sol Shenker; David Sturgill; Anastasia A. Samsonova; Richard Weiszmann; Garret Robinson; Juan Hernandez; Justen Andrews

Animal transcriptomes are dynamic, with each cell type, tissue and organ system expressing an ensemble of transcript isoforms that give rise to substantial diversity. Here we have identified new genes, transcripts and proteins using poly(A)+ RNA sequencing from Drosophila melanogaster in cultured cell lines, dissected organ systems and under environmental perturbations. We found that a small set of mostly neural-specific genes has the potential to encode thousands of transcripts each through extensive alternative promoter usage and RNA splicing. The magnitudes of splicing changes are larger between tissues than between developmental stages, and most sex-specific splicing is gonad-specific. Gonads express hundreds of previously unknown coding and long non-coding RNAs (lncRNAs), some of which are antisense to protein-coding genes and produce short regulatory RNAs. Furthermore, previously identified pervasive intergenic transcription occurs primarily within newly identified introns. The fly transcriptome is substantially more complex than previously recognized, with this complexity arising from combinatorial usage of promoters, splice sites and polyadenylation sites.


Genome Biology | 2011

Dynamic reprogramming of chromatin accessibility during Drosophila embryo development

Sean Thomas; Xiao Yong Li; Peter J. Sabo; Richard Sandstrom; Robert E. Thurman; Theresa K. Canfield; Erika Giste; William W. Fisher; Ann S. Hammonds; Susan E. Celniker; Mark D. Biggin; John A. Stamatoyannopoulos

BackgroundThe development of complex organisms is believed to involve progressive restrictions in cellular fate. Understanding the scope and features of chromatin dynamics during embryogenesis, and identifying regulatory elements important for directing developmental processes remain key goals of developmental biology.ResultsWe used in vivo DNaseI sensitivity to map the locations of regulatory elements, and explore the changing chromatin landscape during the first 11 hours of Drosophila embryonic development. We identified thousands of conserved, developmentally dynamic, distal DNaseI hypersensitive sites associated with spatial and temporal expression patterning of linked genes and with large regions of chromatin plasticity. We observed a nearly uniform balance between developmentally up- and down-regulated DNaseI hypersensitive sites. Analysis of promoter chromatin architecture revealed a novel role for classical core promoter sequence elements in directing temporally regulated chromatin remodeling. Another unexpected feature of the chromatin landscape was the presence of localized accessibility over many protein-coding regions, subsets of which were developmentally regulated or associated with the transcription of genes with prominent maternal RNA contributions in the blastoderm.ConclusionsOur results provide a global view of the rich and dynamic chromatin landscape of early animal development, as well as novel insights into the organization of developmentally regulated chromatin features.


Nature | 2014

Comparative analysis of the transcriptome across distant species.

Mark Gerstein; Joel Rozowsky; Koon Kiu Yan; Daifeng Wang; Chao Cheng; James B. Brown; Carrie A. Davis; LaDeana W. Hillier; Cristina Sisu; Jingyi Jessica Li; Baikang Pei; Arif Harmanci; Michael O. Duff; Sarah Djebali; Roger P. Alexander; Burak H. Alver; Raymond K. Auerbach; Kimberly Bell; Peter J. Bickel; Max E. Boeck; Nathan Boley; Benjamin W. Booth; Lucy Cherbas; Peter Cherbas; Chao Di; Alexander Dobin; Jorg Drenkow; Brent Ewing; Gang Fang; Megan Fastuca

The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a ‘universal model’ based on a single set of organism-independent parameters.


Proceedings of the National Academy of Sciences of the United States of America | 2012

DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila

William W. Fisher; Jingyi Jessica Li; Ann S. Hammonds; James B. Brown; Barret D. Pfeiffer; Richard Weiszmann; Stewart MacArthur; Sean Thomas; John A. Stamatoyannopoulos; Michael B. Eisen; Peter J. Bickel; Mark D. Biggin; Susan E. Celniker

In animals, each sequence-specific transcription factor typically binds to thousands of genomic regions in vivo. Our previous studies of 20 transcription factors show that most genomic regions bound at high levels in Drosophila blastoderm embryos are known or probable functional targets, but genomic regions occupied only at low levels have characteristics suggesting that most are not involved in the cis-regulation of transcription. Here we use transgenic reporter gene assays to directly test the transcriptional activity of 104 genomic regions bound at different levels by the 20 transcription factors. Fifteen genomic regions were selected based solely on the DNA occupancy level of the transcription factor Kruppel. Five of the six most highly bound regions drive blastoderm patterns of reporter transcription. In contrast, only one of the nine lowly bound regions drives transcription at this stage and four of them are not detectably active at any stage of embryogenesis. A larger set of 89 genomic regions chosen using criteria designed to identify functional cis-regulatory regions supports the same trend: genomic regions occupied at high levels by transcription factors in vivo drive patterned gene expression, whereas those occupied only at lower levels mostly do not. These results support studies that indicate that the high cellular concentrations of sequence-specific transcription factors drive extensive, low-occupancy, nonfunctional interactions within the accessible portions of the genome.


Molecular Systems Biology | 2010

Systematic image-driven analysis of the spatial Drosophila embryonic expression landscape.

Erwin Frise; Ann S. Hammonds; Susan E. Celniker

Discovery of temporal and spatial patterns of gene expression is essential for understanding the regulatory networks and development in multicellular organisms. We analyzed the images from our large‐scale spatial expression data set of early Drosophila embryonic development and present a comprehensive computational image analysis of the expression landscape. For this study, we created an innovative virtual representation of embryonic expression patterns using an elliptically shaped mesh grid that allows us to make quantitative comparisons of gene expression using a common frame of reference. Demonstrating the power of our approach, we used gene co‐expression to identify distinct expression domains in the early embryo; the result is surprisingly similar to the fate map determined using laser ablation. We also used a clustering strategy to find genes with similar patterns and developed new analysis tools to detect variation within consensus patterns, adjacent non‐overlapping patterns, and anti‐correlated patterns. Of the 1800 genes investigated, only half had previously assigned functions. The known genes suggest developmental roles for the clusters, and identification of related patterns predicts requirements for co‐occurring biological functions.


Genome Biology | 2013

Spatial expression of transcription factors in Drosophila embryonic organ development.

Ann S. Hammonds; Christopher A. Bristow; William W. Fisher; Richard Weiszmann; Siqi Wu; Volker Hartenstein; Manolis Kellis; Bin Yu; Erwin Frise; Susan E. Celniker

BackgroundSite-specific transcription factors (TFs) bind DNA regulatory elements to control expression of target genes, forming the core of gene regulatory networks. Despite decades of research, most studies focus on only a small number of TFs and the roles of many remain unknown.ResultsWe present a systematic characterization of spatiotemporal gene expression patterns for all known or predicted Drosophila TFs throughout embryogenesis, the first such comprehensive study for any metazoan animal. We generated RNA expression patterns for all 708 TFs by in situ hybridization, annotated the patterns using an anatomical controlled vocabulary, and analyzed TF expression in the context of organ system development. Nearly all TFs are expressed during embryogenesis and more than half are specifically expressed in the central nervous system. Compared to other genes, TFs are enriched early in the development of most organ systems, and throughout the development of the nervous system. Of the 535 TFs with spatially restricted expression, 79% are dynamically expressed in multiple organ systems while 21% show single-organ specificity. Of those expressed in multiple organ systems, 77 TFs are restricted to a single organ system either early or late in development. Expression patterns for 354 TFs are characterized for the first time in this study.ConclusionsWe produced a reference TF dataset for the investigation of gene regulatory networks in embryogenesis, and gained insight into the expression dynamics of the full complement of TFs controlling the development of each organ system.


PLOS Biology | 2010

Quantitative Analysis of the Drosophila Segmentation Regulatory Network Using Pattern Generating Potentials

Majid Kazemian; Charles Blatti; Adam Richards; Michael McCutchan; Noriko Wakabayashi-Ito; Ann S. Hammonds; Susan E. Celniker; Sudhir Kumar; Scot A. Wolfe; Michael H. Brodsky; Saurabh Sinha

A new computational method uses gene expression databases and transcription factor binding specificities to describe regulatory elements in the Drosophila A/P patterning network in unprecedented detail.


Nature Protocols | 2009

Determination of gene expression patterns using high-throughput RNA in situ hybridization to whole-mount Drosophila embryos

Richard Weiszmann; Ann S. Hammonds; Susan E. Celniker

We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4 °C for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.

Collaboration


Dive into the Ann S. Hammonds's collaboration.

Top Co-Authors

Avatar

Susan E. Celniker

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kenneth H. Wan

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Soo Park

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Benjamin W. Booth

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Charles Yu

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard Weiszmann

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Erwin Frise

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

William W. Fisher

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James B. Brown

University of California

View shared research outputs
Top Co-Authors

Avatar

Joseph W. Carlson

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge