Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Weiszmann is active.

Publication


Featured researches published by Richard Weiszmann.


Genome Biology | 2002

Systematic determination of patterns of gene expression during Drosophila embryogenesis

Pavel Tomancak; Amy Beaton; Richard Weiszmann; Elaine Kwan; ShengQiang Shu; Suzanna E. Lewis; Stephen Richards; Michael Ashburner; Volker Hartenstein; Susan E. Celniker; Gerald M. Rubin

BackgroundCell-fate specification and tissue differentiation during development are largely achieved by the regulation of gene transcription.ResultsAs a first step to creating a comprehensive atlas of gene-expression patterns during Drosophila embryogenesis, we examined 2,179 genes by in situ hybridization to fixed Drosophila embryos. Of the genes assayed, 63.7% displayed dynamic expression patterns that were documented with 25,690 digital photomicrographs of individual embryos. The photomicrographs were annotated using controlled vocabularies for anatomical structures that are organized into a developmental hierarchy. We also generated a detailed time course of gene expression during embryogenesis using microarrays to provide an independent corroboration of the in situ hybridization results. All image, annotation and microarray data are stored in publicly available database. We found that the RNA transcripts of about 1% of genes show clear subcellular localization. Nearly all the annotated expression patterns are distinct. We present an approach for organizing the data by hierarchical clustering of annotation terms that allows us to group tissues that express similar sets of genes as well as genes displaying similar expression patterns.ConclusionsAnalyzing gene-expression patterns by in situ hybridization to whole-mount embryos provides an extremely rich dataset that can be used to identify genes involved in developmental processes that have been missed by traditional genetic analysis. Systematic analysis of rigorously annotated patterns of gene expression will complement and extend the types of analyses carried out using expression microarrays.


Genome Biology | 2007

Global analysis of patterns of gene expression during Drosophila embryogenesis

Pavel Tomancak; Benjamin P. Berman; Amy Beaton; Richard Weiszmann; Elaine Kwan; Volker Hartenstein; Susan E. Celniker; Gerald M. Rubin

BackgroundCell and tissue specific gene expression is a defining feature of embryonic development in multi-cellular organisms. However, the range of gene expression patterns, the extent of the correlation of expression with function, and the classes of genes whose spatial expression are tightly regulated have been unclear due to the lack of an unbiased, genome-wide survey of gene expression patterns.ResultsWe determined and documented embryonic expression patterns for 6,003 (44%) of the 13,659 protein-coding genes identified in the Drosophila melanogaster genome with over 70,000 images and controlled vocabulary annotations. Individual expression patterns are extraordinarily diverse, but by supplementing qualitative in situ hybridization data with quantitative microarray time-course data using a hybrid clustering strategy, we identify groups of genes with similar expression. Of 4,496 genes with detectable expression in the embryo, 2,549 (57%) fall into 10 clusters representing broad expression patterns. The remaining 1,947 (43%) genes fall into 29 clusters representing restricted expression, 20% patterned as early as blastoderm, with the majority restricted to differentiated cell types, such as epithelia, nervous system, or muscle. We investigate the relationship between expression clusters and known molecular and cellular-physiological functions.ConclusionNearly 60% of the genes with detectable expression exhibit broad patterns reflecting quantitative rather than qualitative differences between tissues. The other 40% show tissue-restricted expression; the expression patterns of over 1,500 of these genes are documented here for the first time. Within each of these categories, we identified clusters of genes associated with particular cellular and developmental functions.


Nature | 2014

Diversity and dynamics of the Drosophila transcriptome

James B. Brown; Nathan Boley; Robert C. Eisman; Gemma May; Marcus H. Stoiber; Michael O. Duff; Ben W. Booth; Jiayu Wen; Soo Park; Ana Maria Suzuki; Kenneth H. Wan; Charles Yu; Dayu Zhang; Joseph W. Carlson; Lucy Cherbas; Brian D. Eads; David J. Miller; Keithanne Mockaitis; Johnny Roberts; Carrie A. Davis; Erwin Frise; Ann S. Hammonds; Sara H. Olson; Sol Shenker; David Sturgill; Anastasia A. Samsonova; Richard Weiszmann; Garret Robinson; Juan Hernandez; Justen Andrews

Animal transcriptomes are dynamic, with each cell type, tissue and organ system expressing an ensemble of transcript isoforms that give rise to substantial diversity. Here we have identified new genes, transcripts and proteins using poly(A)+ RNA sequencing from Drosophila melanogaster in cultured cell lines, dissected organ systems and under environmental perturbations. We found that a small set of mostly neural-specific genes has the potential to encode thousands of transcripts each through extensive alternative promoter usage and RNA splicing. The magnitudes of splicing changes are larger between tissues than between developmental stages, and most sex-specific splicing is gonad-specific. Gonads express hundreds of previously unknown coding and long non-coding RNAs (lncRNAs), some of which are antisense to protein-coding genes and produce short regulatory RNAs. Furthermore, previously identified pervasive intergenic transcription occurs primarily within newly identified introns. The fly transcriptome is substantially more complex than previously recognized, with this complexity arising from combinatorial usage of promoters, splice sites and polyadenylation sites.


Proceedings of the National Academy of Sciences of the United States of America | 2012

DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila

William W. Fisher; Jingyi Jessica Li; Ann S. Hammonds; James B. Brown; Barret D. Pfeiffer; Richard Weiszmann; Stewart MacArthur; Sean Thomas; John A. Stamatoyannopoulos; Michael B. Eisen; Peter J. Bickel; Mark D. Biggin; Susan E. Celniker

In animals, each sequence-specific transcription factor typically binds to thousands of genomic regions in vivo. Our previous studies of 20 transcription factors show that most genomic regions bound at high levels in Drosophila blastoderm embryos are known or probable functional targets, but genomic regions occupied only at low levels have characteristics suggesting that most are not involved in the cis-regulation of transcription. Here we use transgenic reporter gene assays to directly test the transcriptional activity of 104 genomic regions bound at different levels by the 20 transcription factors. Fifteen genomic regions were selected based solely on the DNA occupancy level of the transcription factor Kruppel. Five of the six most highly bound regions drive blastoderm patterns of reporter transcription. In contrast, only one of the nine lowly bound regions drives transcription at this stage and four of them are not detectably active at any stage of embryogenesis. A larger set of 89 genomic regions chosen using criteria designed to identify functional cis-regulatory regions supports the same trend: genomic regions occupied at high levels by transcription factors in vivo drive patterned gene expression, whereas those occupied only at lower levels mostly do not. These results support studies that indicate that the high cellular concentrations of sequence-specific transcription factors drive extensive, low-occupancy, nonfunctional interactions within the accessible portions of the genome.


Genome Biology | 2013

Spatial expression of transcription factors in Drosophila embryonic organ development.

Ann S. Hammonds; Christopher A. Bristow; William W. Fisher; Richard Weiszmann; Siqi Wu; Volker Hartenstein; Manolis Kellis; Bin Yu; Erwin Frise; Susan E. Celniker

BackgroundSite-specific transcription factors (TFs) bind DNA regulatory elements to control expression of target genes, forming the core of gene regulatory networks. Despite decades of research, most studies focus on only a small number of TFs and the roles of many remain unknown.ResultsWe present a systematic characterization of spatiotemporal gene expression patterns for all known or predicted Drosophila TFs throughout embryogenesis, the first such comprehensive study for any metazoan animal. We generated RNA expression patterns for all 708 TFs by in situ hybridization, annotated the patterns using an anatomical controlled vocabulary, and analyzed TF expression in the context of organ system development. Nearly all TFs are expressed during embryogenesis and more than half are specifically expressed in the central nervous system. Compared to other genes, TFs are enriched early in the development of most organ systems, and throughout the development of the nervous system. Of the 535 TFs with spatially restricted expression, 79% are dynamically expressed in multiple organ systems while 21% show single-organ specificity. Of those expressed in multiple organ systems, 77 TFs are restricted to a single organ system either early or late in development. Expression patterns for 354 TFs are characterized for the first time in this study.ConclusionsWe produced a reference TF dataset for the investigation of gene regulatory networks in embryogenesis, and gained insight into the expression dynamics of the full complement of TFs controlling the development of each organ system.


Nature Protocols | 2009

Determination of gene expression patterns using high-throughput RNA in situ hybridization to whole-mount Drosophila embryos

Richard Weiszmann; Ann S. Hammonds; Susan E. Celniker

We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4 °C for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.


research in computational molecular biology | 2007

Comparative analysis of spatial patterns of gene expression in Drosophila melanogaster imaginal discs

Cyrus L. Harmon; Parvez Ahammad; Ann S. Hammonds; Richard Weiszmann; Susan E. Celniker; Shankar Sastry; Gerald M. Rubin

Determining the precise spatial extent of expression of genes across different tissues, along with knowledge of the biochemical function of the genes is critical for understanding the roles of various genes in the development of metazoan organisms. To address this problem, we have developed high-throughput methods for generating images of gene expression in Drosophila melanogaster imaginal discs and for the automated analysis of these images. Our method automatically learns tissue shapes from a small number of manually segmented training examples and automatically aligns, extracts and scores new images, which are analyzed to generate gene expression maps for each gene. We have developed a reverse lookup procedure that enables us to identify genes that have spatial expression patterns most similar to a given gene of interest. Our methods enable us to cluster both the genes and the pixels that of the maps, thereby identifying sets of genes that have similar patterns, and regions of the tissues of interest that have similar gene expression profiles across a large number of genes.


RNA | 2018

An important class of intron retention events in human erythroblasts is regulated by cryptic exons proposed to function as splicing decoys

Marilyn Parra; Ben W. Booth; Richard Weiszmann; Brian A Yee; Gene W. Yeo; James B. Brown; Susan E. Celniker; John G. Conboy

During terminal erythropoiesis, the splicing machinery in differentiating erythroblasts executes a robust intron retention (IR) program that impacts expression of hundreds of genes. We studied IR mechanisms in the SF3B1 splicing factor gene, which expresses ∼50% of its transcripts in late erythroblasts as a nuclear isoform that retains intron 4. RNA-seq analysis of nonsense-mediated decay (NMD)-inhibited cells revealed previously undescribed splice junctions, rare or not detected in normal cells, that connect constitutive exons 4 and 5 to highly conserved cryptic cassette exons within the intron. Minigene splicing reporter assays showed that these cassettes promote IR. Genome-wide analysis of splice junction reads demonstrated that cryptic noncoding cassettes are much more common in large (>1 kb) retained introns than they are in small retained introns or in nonretained introns. Functional assays showed that heterologous cassettes can promote retention of intron 4 in the SF3B1 splicing reporter. Although many of these cryptic exons were spliced inefficiently, they exhibited substantial binding of U2AF1 and U2AF2 adjacent to their splice acceptor sites. We propose that these exons function as decoys that engage the intron-terminal splice sites, thereby blocking cross-intron interactions required for excision. Developmental regulation of decoy function underlies a major component of the erythroblast IR program.


bioRxiv | 2018

Exploiting regulatory heterogeneity to systematically identify enhancers with high accuracy

Hamutal Arbel; William W. Fisher; Ann S. Hammonds; Kenneth H. Wan; Soo Park; Richard Weiszmann; Soile V.E. Keranen; Clara Henriquez; Omid Shams Solari; Peter J. Bickel; Mark D. Biggin; Susan E. Celniker; James B. Brown

Identifying functional enhancers elements in metazoan systems is a major challenge. For example, large-scale validation of enhancers predicted by ENCODE reveal false positive rates of at least 70%. Here we use the pregrastrula patterning network of Drosophila melanogaster to demonstrate that loss in accuracy in held out data results from heterogeneity of functional signatures in enhancer elements. We show that two classes of enhancer are active during early Drosophila embryogenesis and that by focusing on a single, relatively homogeneous class of elements, over 98% prediction accuracy can be achieved in a balanced, completely held-out test set. The class of well predicted elements is composed predominantly of enhancers driving multi-stage, segmentation patterns, which we designate segmentation driving enhancers (SDE). Prediction is driven by the DNA occupancy of early developmental transcription factors, with almost no additional power derived from histone modifications. We further show that improved accuracy is not a property of a particular prediction method: after conditioning on the SDE set, naïve Bayes and logistic regression perform as well as more sophisticated tools. Applying this method to a genome-wide scan, we predict 1,640 SDEs that cover 1.6% of the genome, 916 of which are novel. An analysis of 32 novel SDEs using wholemount embryonic imaging of stably integrated reporter constructs chosen throughout our prediction rank-list showed >90% drove expression patterns. We achieved 86.7% precision on a genome-wide scan, with an estimated recall of at least 98%, indicating high accuracy and completeness in annotating this class of functional elements. Significance Statement We demonstrate a high accuracy method for predicting enhancers genome wide with > 85% precision as validated by transgenic reporter assays in Drosophila embryos. This is the first time such accuracy has been achieved in a metazoan system, allowing us to predict with high-confidence 1640 enhancers, 916 of which are novel. The predicted enhancers are demarcated by heterogeneous collections of epigenetic marks; many strong enhancers are free from classical indicators of activity, including H3K27ac, but are bound by key transcription factors. H3K27ac, often used as a one-dimensional predictor of enhancer activity, is an uninformative parameter in our data.


Cell | 2013

An extracellular interactome of Immunoglobulin and LRR proteins reveals receptor-ligand networks

Engin Özkan; Robert A. Carrillo; Catharine L. Eastman; Richard Weiszmann; Deepa Waghray; Karl G. Johnson; Kai Zinn; Susan E. Celniker; K. Christopher Garcia

Collaboration


Dive into the Richard Weiszmann's collaboration.

Top Co-Authors

Avatar

Susan E. Celniker

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ann S. Hammonds

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Amy Beaton

University of California

View shared research outputs
Top Co-Authors

Avatar

James B. Brown

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gerald M. Rubin

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Mark D. Biggin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elaine Kwan

University of California

View shared research outputs
Top Co-Authors

Avatar

Erwin Frise

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kenneth H. Wan

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge