Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Angela Barba is active.

Publication


Featured researches published by Anna Angela Barba.


European Journal of Pharmaceutics and Biopharmaceutics | 2012

Intensifying the microencapsulation process: ultrasonic atomization as an innovative approach.

Annalisa Dalmoro; Anna Angela Barba; Gaetano Lamberti; Matteo d’Amore

In this review, new approaches to the microencapsulation processes, widely used in the manufacturing of pharmaceutical products, are discussed focusing the attention on the emerging ultrasonic atomization technique. Fundamentals and novel aspects are presented, and advantages of ultrasonic atomization in terms of intensification and low energy requests are emphasized.


Molecular Pharmaceutics | 2015

Modeling the Drug Release from Hydrogel-Based Matrices

Diego Caccavo; Sara Cascone; Gaetano Lamberti; Anna Angela Barba

In this work the behavior of hydrogel-based matrices, the most widespread systems for oral controlled release of pharmaceuticals, has been mathematically described. In addition, the calculations of the model have been validated against a rich set of experimental data obtained working with tablets made of hydroxypropyl methylcellulose (a hydrogel) and theophylline (a model drug). The model takes into account water uptake, hydrogel swelling, drug release, and polymer erosion. The model was obtained as an improvement of a previous code, describing the diffusion in concentrated systems, and obtaining the erosion front (which is a moving boundary) from the polymer mass balance (in this way, the number of fitting parameters was also reduced by one). The proposed model was found able to describe all the observed phenomena, and then it can be considered a tool with predictive capabilities, useful in design and testing of new dosage systems based on hydrogels.


International Journal of Pharmaceutics | 2011

A combined technique based on prilling and microwave assisted treatments for the production of ketoprofen controlled release dosage forms

Giulia Auriemma; Pasquale Del Gaudio; Anna Angela Barba; Matteo d’Amore; Rita Patrizia Aquino

In this study the feasibility of joining prilling and microwave (MW) assisted treatments as combined technique to produce controlled release alginate beads was tested. Beads were produced by prilling (laminar jet break-up) using different polymer concentrations and loaded with ketoprofen, a slightly soluble non-steroidal anti-inflammatory BCS class II drug characterized by low melting point. MW assisted treatments applied using different irradiating conditions were performed as drying/curing step. The effect of formulation conditions and process variables on drying kinetics, particle micromeritics, shape, surface and inner characteristics of the matrix as well as drug loading and drug release behaviour was studied (USP pH change method). The properties of MW dried particles were compared to those dehydrated by convective methods (room conditions and tray oven 105°C). Results showed that MW dried ketoprofen loaded beads were obtained in a very narrow dimensional range retaining shape and size distribution of the hydrates particles. Compared to the traditional drying methods, MW treatments were able to strongly increase drying rate of the hydrated beads achieving faster and controllable dehydration kinetics. Moreover, different regimes of irradiation affected structural properties of the particles such as matrix porosity as well as the solid state of the loaded drug. DSC, X-ray and FTIR analyses indicated complex chemical interactions between the drug and polymer matrix induced by MW, related with the regime of irradiation, that contributes to the differences in release profiles. In fact, MW treatments under different time and irradiating regimes are able to modulate drug release from alginate beads; high levels of irradiation led to beads suitable for immediate release oral dosage forms whereas the lowest regime of irradiation led to beads that achieved a prolonged/sustained release of the drug till 8h in simulated intestinal medium. This study showed that prilling in combination with microwave treatments is a useful and simple tandem technique to prepare dextran-based dried beads.


Journal of Pharmaceutical Sciences | 2009

On the Behavior of HPMC/Theophylline Matrices for Controlled Drug Delivery

Anna Angela Barba; Matteo D'Amore; Sara Cascone; Serafina Chirico; Gaetano Lamberti; Giuseppe Titomanlio

Design of systems for oral controlled release of drug could take advantages from the knowledge of which phenomena take place. In this work matrices obtained by powders compression (50:50, hydroxypropyl methylcellulose, a swelling hydrogel, and theophylline, a model drug) were immersed in water at 37 degrees C, allowing the water uptake and the drug release by lateral surface, confining the cylindrical matrices between glass slides. The tablets, after given immersion times, were withdrawn, cut in several annuli, and subsequently analyzed for the drug and the water concentration radial profiles. The data confirmed the pseudo-diffusive nature of the process, allowing to give a deep insight into the drug release process from swellable hydrogel matrices. In particular, it was confirmed the presence of nonhomogeneous gel layer, rich in water and poor in drug, with a profile of drug concentration which agrees well with a pseudo-diffusion phenomenon.


European Journal of Pharmaceutical Sciences | 2009

A general code to predict the drug release kinetics from different shaped matrices.

Anna Angela Barba; Matteo d’Amore; Serafina Chirico; Gaetano Lamberti; Giuseppe Titomanlio

This work deals with the modeling of drug release from solid pharmaceutical systems (matrices) for oral delivery. The attention was paid to the behavior of matrices made of hydrogels and drug, and the modeling was devoted to reproduce all the relevant phenomena (water up-take, gel swelling, diffusivity increase, drug diffusion and polymer erosion). Thus, the transient mass balances (for both drug and water), with the proper initial and boundary conditions were written, and a generalized numerical code was formulated; it is able to describe several geometries (slab, sphere, infinite and finite cylinders; this latter was done by an approximation which reduces the 2D problem to an 1D scheme). The main phenomena observed in drug delivery from hydrogel-based matrix, i.e. polymer swelling and erosion, were taken into account. The code was validated by comparison with analytical solutions, available for some simplified situation, and then it was tested with some experimental data taken from literature.


International Journal of Pharmaceutics | 2015

Controlled drug release from hydrogel-based matrices: Experiments and modeling

Diego Caccavo; Sara Cascone; Gaetano Lamberti; Anna Angela Barba

Controlled release by oral administration is mainly achieved by pharmaceuticals based on hydrogels. Once swallowed, a matrix made of hydrogels experiences water up-take, swelling, drug dissolution and diffusion, polymer erosion. The detailed understanding and quantification of such a complex behavior is a mandatory prerequisite to the design of novel pharmaceuticals for controlled oral delivery. In this work, the behavior of hydrogel-based matrices has been investigated by means of several experimental techniques previously pointed out (gravimetric, and based on texture analysis); and then all the observed features were mathematically described using a physical model, defined and recently improved by our research group (based on balance equations, rate equations and swelling predictions). The agreement between the huge set of experimental data and the detailed calculations by the model is good, confirming the validity of both the experimental and the theoretical approaches.


Current Drug Metabolism | 2015

Liposomes as siRNA Delivery Vectors

Sabrina Bochicchio; Annalisa Dalmoro; Anna Angela Barba; Gabriele Grassi; Gaetano Lamberti

Nucleic Acid Based Drugs (NABDs) constitute a class of promising and powerful therapeutic new agents with limited side effects, potentially useable against a wide range of diseases, including cancer. Among them, the short interfering RNAs (siRNAs), represent very effective molecules. Despite their in vitro efficacy, the major drawback that limits siRNAs usage consists in a difficult delivery due to their very low stability in physiological fluids, and to their limited membrane-permeability through physiological barriers. On the other hand, the liposomes (lipid bilayers closed in vesicles of various sizes) represent interesting drug delivery systems (DDSs) which can be tailored in order to get the best performance in terms of load, vesicle size and transfection yield. In this work, the current state of study in these two fields, and the connections between them, are briefly summarized.


Current Medicinal Chemistry | 2013

Therapeutic Potential of Nucleic Acid-Based Drugs in Coronary Hyper- Proliferative Vascular Diseases

Gabriele Grassi; Bruna Scaggiante; Barbara Dapas; Rossella Farra; Federica Tonon; Gaetano Lamberti; Anna Angela Barba; Simona Maria Fiorentino; Nicola Fiotti; Fabrizio Zanconati; Michela Abrami; Mario Grassi

The thickening of the vessel wall (intimal hyperplasia) is a pathological process which often follows revascularization approaches such as transluminal angioplasty and artery bypass graft, procedures used to re-vascularize stenotic artery. Despite the significant improvements in the treatment of intimal hyperplasia obtained in the last years, the problem has not completely solved. Nucleic acid based-drugs (NABDs) represent an emergent class of molecules with potential therapeutic value for the treatment of intimal hyperplasia. NABDs of interest in the field of intimal hyperplasia are: ribozymes, DNAzymes, antisense oligonucleotides, decoy oligonucleotides, small interfering RNAs and micro interfering RNAs. These molecules can recognize, in a sequencespecific fashion, a target which, depending on the different NABDs, can be represented by a nucleic acid or a protein. Upon binding, NABDs can down-modulate the functions of the target (mRNA/proteins) and thus they are used to impair the functions of disease-causing biological molecules.In spite of the great therapeutic potential demonstrated by NABDs in many experimental model of intima hyperplasia, their practical use is hindered by the necessity to identify optimal delivery systems to the vasculature. In the first part of this review a brief description of the clinical problem related to intima hyperplasia formation after revascularization procedures is reported. In the second part, the attention is focused on the experimental evidences of NABD therapeutic potential in the prevention of intimal hyperplasia. Finally, in the third part, we will describe the strategies developed to optimize NABD delivery to the diseased vessel.


Current Drug Metabolism | 2015

Novel Lipid and Polymeric Materials as Delivery Systems for Nucleic Acid Based Drugs.

Anna Angela Barba; Gaetano Lamberti; Carla Sardo; Barbara Dapas; Michela Abrami; Mario Grassi; Rossella Farra; Federica Tonon; Giancarlo Forte; Francesco Musiani; Mariano Licciardi; Gabriele Pozzato; Fabrizio Zanconati; Bruna Scaggiante; Gabriele Grassi; Gennara Cavallaro

Nucleic acid based drugs (NADBs) are short DNA/RNA molecules that include among others, antisense oligonucleotides, aptamers, small interfering RNAs and micro-interfering RNAs. Despite the different mechanisms of actions, NABDs have the ability to combat the effects of pathological gene expression in many experimental systems. Thus, nowadays, NABDs are considered to have a great therapeutic potential, possibly superior to that of available drugs. Unfortunately, however, the lack of effective delivery systems limits the practical use of NABDs. Due to their hydrophilic nature, NABDs cannot efficiently cross cellular membrane; in addition, they are subjected to fast degradation by cellular and extracellular nucleases. Together these aspects make the delivery of NABDs as naked molecules almost un-effective. To optimize NABD delivery, several solutions have been investigated. From the first attempts described in the beginning of the 1980s, a burst in the number of published papers occurred in the beginning of 1990 s reaching a peak in 2012-13. The extensive amount of work performed so far clearly witnesses the interest of the scientific community in this topic. In the present review, we will concentrate on the description of the most interesting advances in the field. Particular emphasis will be put on polymeric and lipid materials used alone or in combination with a promising delivery strategy based on the use of carbon nanotubes. The data presented suggest that, although further improvements are required, we are not far from the identification of effective delivery systems for NABDs thus making the clinical use of these molecules closer to reality.


International Journal of Pharmaceutics | 2015

PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions.

Gennara Cavallaro; Emanuela Fabiola Craparo; Carla Sardo; Gaetano Lamberti; Anna Angela Barba; Annalisa Dalmoro

Nanocarriers of amphiphilic polymeric materials represent versatile delivery systems for poorly water soluble drugs. In this work the technique of solvent evaporation from multiple emulsions was applied to produce nanovectors based on new amphiphilic copolymer, the α,β-poly(N-2-hydroxyethyl)-DL-aspartamide-polylactic acid (PHEA-PLA), purposely synthesized to be used in the controlled release of active molecules poorly soluble in water. To this aim an amphiphilic derivative of PHEA, a hydrophilic polymer, was synthesized by derivatization of the polymeric backbone with hydrophobic grafts of polylactic acid (PLA). The achieved copolymer was thus used to produce nanoparticles loaded with α tocopherol (vitamin E) adopted as lipophilic model molecule. Applying a protocol based on solvent evaporation from multiple emulsions assisted by ultrasonic energy and optimizing the emulsification process (solvent selection/separation stages), PHEA-PLA nanostructured particles with total α tocopherol entrapment efficiency (100%), were obtained. The drug release is expected to take place in lower times with respect to PLA due to the presence of the hydrophilic PHEA, therefore the produced nanoparticles can be used for semi-long term release drug delivery systems.

Collaboration


Dive into the Anna Angela Barba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge