Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna G. Green is active.

Publication


Featured researches published by Anna G. Green.


eLife | 2014

Sequence co-evolution gives 3D contacts and structures of protein complexes

Thomas A. Hopf; Charlotta Schärfe; João Garcia Lopes Maia Rodrigues; Anna G. Green; Oliver Kohlbacher; Chris Sander; Alexandre M. J. J. Bonvin; Debora S. Marks

Protein–protein interactions are fundamental to many biological processes. Experimental screens have identified tens of thousands of interactions, and structural biology has provided detailed functional insight for select 3D protein complexes. An alternative rich source of information about protein interactions is the evolutionary sequence record. Building on earlier work, we show that analysis of correlated evolutionary sequence changes across proteins identifies residues that are close in space with sufficient accuracy to determine the three-dimensional structure of the protein complexes. We evaluate prediction performance in blinded tests on 76 complexes of known 3D structure, predict protein–protein contacts in 32 complexes of unknown structure, and demonstrate how evolutionary couplings can be used to distinguish between interacting and non-interacting protein pairs in a large complex. With the current growth of sequences, we expect that the method can be generalized to genome-wide elucidation of protein–protein interaction networks and used for interaction predictions at residue resolution. DOI: http://dx.doi.org/10.7554/eLife.03430.001


Biology Direct | 2011

A Rooted Net of Life

David Williams; Gregory P. Fournier; Pascal Lapierre; Kristen S. Swithers; Anna G. Green; Cheryl P. Andam; J. Peter Gogarten

Phylogenetic reconstruction using DNA and protein sequences has allowed the reconstruction of evolutionary histories encompassing all life. We present and discuss a means to incorporate much of this rich narrative into a single model that acknowledges the discrete evolutionary units that constitute the organism. Briefly, this Rooted Net of Life genome phylogeny is constructed around an initial, well resolved and rooted tree scaffold inferred from a supermatrix of combined ribosomal genes. Extant sampled ribosomes form the leaves of the tree scaffold. These leaves, but not necessarily the deeper parts of the scaffold, can be considered to represent a genome or pan-genome, and to be associated with members of other gene families within that sequenced (pan)genome. Unrooted phylogenies of gene families containing four or more members are reconstructed and superimposed over the scaffold. Initially, reticulations are formed where incongruities between topologies exist. Given sufficient evidence, edges may then be differentiated as those representing vertical lines of inheritance within lineages and those representing horizontal genetic transfers or endosymbioses between lineages.ReviewersW. Ford Doolittle, Eric Bapteste and Robert Beiko.


The Journal of Infectious Diseases | 2016

Genomic Epidemiology of Gonococcal Resistance to Extended-Spectrum Cephalosporins, Macrolides, and Fluoroquinolones in the United States, 2000–2013

Yonatan H. Grad; Simon R. Harris; Robert D. Kirkcaldy; Anna G. Green; Debora S. Marks; Stephen D. Bentley; David L. Trees; Marc Lipsitch

Background. Treatment of Neisseria gonorrhoeae infection is empirical and based on population-wide susceptibilities. Increasing antimicrobial resistance underscores the potential importance of rapid diagnostic tests, including sequence-based tests, to guide therapy. However, the usefulness of sequence-based diagnostic tests depends on the prevalence and dynamics of the resistance mechanisms. Methods. We define the prevalence and dynamics of resistance markers to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in 1102 resistant and susceptible clinical N. gonorrhoeae isolates collected from 2000 to 2013 via the Centers for Disease Control and Preventions Gonococcal Isolate Surveillance Project. Results. Reduced extended-spectrum cephalosporin susceptibility is predominantly clonal and associated with the mosaic penA XXXIV allele and derivatives (sensitivity 98% for cefixime and 91% for ceftriaxone), but alternative resistance mechanisms have sporadically emerged. Reduced azithromycin susceptibility has arisen through multiple mechanisms and shows limited clonal spread; the basis for resistance in 36% of isolates with reduced azithromycin susceptibility is unclear. Quinolone-resistant N. gonorrhoeae has arisen multiple times, with extensive clonal spread. Conclusions. Quinolone-resistant N. gonorrhoeae and reduced cefixime susceptibility appear amenable to development of sequence-based diagnostic tests, whereas the undefined mechanisms of resistance to ceftriaxone and azithromycin underscore the importance of phenotypic surveillance. The identification of multidrug-resistant isolates highlights the need for additional measures to respond to the threat of untreatable gonorrhea.


PLOS ONE | 2013

Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

Nicholas C. Butzin; Pascal Lapierre; Anna G. Green; Kristen S. Swithers; J. Peter Gogarten; Kenneth M. Noll

The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.


Genome Biology and Evolution | 2012

Genome sequence of the mesophilic Thermotogales bacterium Mesotoga prima MesG1.Ag.4.2 reveals the largest Thermotogales genome to date.

Olga Zhaxybayeva; Kristen S. Swithers; Julia M. Foght; Anna G. Green; David Bruce; Chris Detter; Shunsheng Han; Hazuki Teshima; James Han; Tanja Woyke; Sam Pitluck; Matt Nolan; Natalia Ivanova; Amrita Pati; Miriam Land; Marlena Dlutek; W. Ford Doolittle; Kenneth M. Noll; Camilla L. Nesbø

Here we describe the genome of Mesotoga prima MesG1.Ag4.2, the first genome of a mesophilic Thermotogales bacterium. Mesotoga prima was isolated from a polychlorinated biphenyl (PCB)-dechlorinating enrichment culture from Baltimore Harbor sediments. Its 2.97 Mb genome is considerably larger than any previously sequenced Thermotogales genomes, which range between 1.86 and 2.30 Mb. This larger size is due to both higher numbers of protein-coding genes and larger intergenic regions. In particular, the M. prima genome contains more genes for proteins involved in regulatory functions, for instance those involved in regulation of transcription. Together with its closest relative, Kosmotoga olearia, it also encodes different types of proteins involved in environmental and cell–cell interactions as compared with other Thermotogales bacteria. Amino acid composition analysis of M. prima proteins implies that this lineage has inhabited low-temperature environments for a long time. A large fraction of the M. prima genome has been acquired by lateral gene transfer (LGT): a DarkHorse analysis suggests that 766 (32%) of predicted protein-coding genes have been involved in LGT after Mesotoga diverged from the other Thermotogales lineages. A notable example of a lineage-specific LGT event is a reductive dehalogenase gene—a key enzyme in dehalorespiration, indicating M. prima may have a more active role in PCB dechlorination than was previously assumed.


eLife | 2016

Antiparallel protocadherin homodimers use distinct affinity- and specificity-mediating regions in cadherin repeats 1-4

John M. Nicoludis; Bennett E. Vogt; Anna G. Green; Charlotta Schärfe; Debora S. Marks; Rachelle Gaudet

Protocadherins (Pcdhs) are cell adhesion and signaling proteins used by neurons to develop and maintain neuronal networks, relying on trans homophilic interactions between their extracellular cadherin (EC) repeat domains. We present the structure of the antiparallel EC1-4 homodimer of human PcdhγB3, a member of the γ subfamily of clustered Pcdhs. Structure and sequence comparisons of α, β, and γ clustered Pcdh isoforms illustrate that subfamilies encode specificity in distinct ways through diversification of loop region structure and composition in EC2 and EC3, which contains isoform-specific conservation of primarily polar residues. In contrast, the EC1/EC4 interface comprises hydrophobic interactions that provide non-selective dimerization affinity. Using sequence coevolution analysis, we found evidence for a similar antiparallel EC1-4 interaction in non-clustered Pcdh families. We thus deduce that the EC1-4 antiparallel homodimer is a general interaction strategy that evolved before the divergence of these distinct protocadherin families. DOI: http://dx.doi.org/10.7554/eLife.18449.001


Proceedings of the National Academy of Sciences of the United States of America | 2016

Impact of a homing intein on recombination frequency and organismal fitness

Adit Naor; Neta Altman-Price; Shannon M. Soucy; Anna G. Green; Yulia Mitiagin; Israela Turgeman-Grott; Noam Davidovich; Johann Peter Gogarten; Uri Gophna

Significance Parasitic interactions can result in changes to the host’s behavior in a way that promotes the distribution or life cycle of the parasite. Inteins are molecular parasites found in all three domains of life. Here we look at the influence of an intein in the DNA polymerase on a population of halophilic archaea in simulations, in experiments, and in the wild. This intein has a fitness cost that is higher than expected for a self-splicing genetic element. In these populations, where mating is independent of host replication, the intein increases the recombination rate between cells with and without inteins. This modification may contribute to the long-term persistence of these genetic parasites, despite the fitness burden they impart on their host. Inteins are parasitic genetic elements that excise themselves at the protein level by self-splicing, allowing the formation of functional, nondisrupted proteins. Many inteins contain a homing endonuclease (HEN) domain and rely on its activity for horizontal propagation. However, successful invasion of an entire population will make this activity redundant, and the HEN domain is expected to degenerate quickly under these conditions. Several theories have been proposed for the continued existence of the both active HEN and noninvaded alleles within a population. However, to date, these models were not directly tested experimentally. Using the natural cell fusion ability of the halophilic archaeon Haloferax volcanii we were able to examine this question in vivo, by mating polB intein-positive [insertion site c in the gene encoding DNA polymerase B (polB-c)] and intein-negative cells and examining the dispersal efficiency of this intein in a natural, polyploid population. Through competition between otherwise isogenic intein-positive and intein-negative strains we determined a surprisingly high fitness cost of over 7% for the polB-c intein. Our laboratory culture experiments and samples taken from Israel’s Mediterranean coastline show that the polB-c inteins do not efficiently take over an inteinless population through mating, even under ideal conditions. The presence of the HEN/intein promoted recombination when intein-positive and intein-negative cells were mated. Increased recombination due to HEN activity contributes not only to intein dissemination but also to variation at the population level because recombination tracts during repair extend substantially from the homing site.


PLOS ONE | 2011

Reassessment of the Lineage Fusion Hypothesis for the Origin of Double Membrane Bacteria

Kristen S. Swithers; Gregory P. Fournier; Anna G. Green; J. Peter Gogarten; Pascal Lapierre

In 2009, James Lake introduced a new hypothesis in which reticulate phylogeny reconstruction is used to elucidate the origin of Gram-negative bacteria (Nature 460: 967–971). The presented data supported the Gram-negative bacteria originating from an ancient endosymbiosis between the Actinobacteria and Clostridia. His conclusion was based on a presence-absence analysis of protein families that divided all prokaryotes into five groups: Actinobacteria, Double Membrane bacteria (DM), Clostridia, Archaea and Bacilli. Of these five groups, the DM are by far the largest and most diverse group compared to the other groupings. While the fusion hypothesis for the origin of double membrane bacteria is enticing, we show that the signal supporting an ancient symbiosis is lost when the DM group is broken down into smaller subgroups. We conclude that the signal detected in James Lakes analysis in part results from a systematic artifact due to group size and diversity combined with low levels of horizontal gene transfer.


Genome Biology and Evolution | 2017

Core Genes Evolve Rapidly in the Long-Term Evolution Experiment with Escherichia coli

Rohan Maddamsetti; Philip J. Hatcher; Anna G. Green; Barry L. Williams; Debora S. Marks; Richard E. Lenski

Bacteria can evolve rapidly under positive selection owing to their vast numbers, allowing their genes to diversify by adapting to different environments. We asked whether the same genes that evolve rapidly in the long-term evolution experiment (LTEE) with Escherichia coli have also diversified extensively in nature. To make this comparison, we identified ∼2000 core genes shared among 60 E. coli strains. During the LTEE, core genes accumulated significantly more nonsynonymous mutations than flexible (i.e., noncore) genes. Furthermore, core genes under positive selection in the LTEE are more conserved in nature than the average core gene. In some cases, adaptive mutations appear to modify protein functions, rather than merely knocking them out. The LTEE conditions are novel for E. coli, at least in relation to its evolutionary history in nature. The constancy and simplicity of the environment likely favor the complete loss of some unused functions and the fine-tuning of others.


Molecular Biology and Evolution | 2013

Reconstruction of Ancestral 16S rRNA Reveals Mutation Bias in the Evolution of Optimal Growth Temperature in the Thermotogae Phylum

Anna G. Green; Kristen S. Swithers; Jan F. Gogarten; Johann Peter Gogarten

Optimal growth temperature is a complex trait involving many cellular components, and its physiology is not yet fully understood. Evolution of continuous characters, such as optimal growth temperature, is often modeled as a one-dimensional random walk, but such a model may be an oversimplification given the complex processes underlying the evolution of continuous characters. Recent articles have used ancestral sequence reconstruction to infer the optimal growth temperature of ancient organisms from the guanine and cytosine content of the stem regions of ribosomal RNA, allowing inferences about the evolution of optimal growth temperature. Here, we investigate the optimal growth temperature of the bacterial phylum Thermotogae. Ancestral sequence reconstruction using a nonhomogeneous model was used to reconstruct the stem guanine and cytosine content of 16S rRNA sequences. We compare this sequence reconstruction method with other ancestral character reconstruction methods, and show that sequence reconstruction generates smaller confidence intervals and different ancestral values than other reconstruction methods. Unbiased random walk simulation indicates that the lower temperature members of the Thermotogales have been under directional selection; however, when a simulation is performed that takes possible mutations into account, it is the high temperature lineages that are, in fact, under directional selection. We find that the evolution of Thermotogales optimal growth temperatures is best fit by a biased random walk model. These findings suggest that it may be easier to evolve from a high optimal growth temperature to a lower one than vice versa.

Collaboration


Dive into the Anna G. Green's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Lapierre

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory P. Fournier

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge