Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristen S. Swithers is active.

Publication


Featured researches published by Kristen S. Swithers.


Proceedings of the National Academy of Sciences of the United States of America | 2009

On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales

Olga Zhaxybayeva; Kristen S. Swithers; Pascal Lapierre; Gregory P. Fournier; Derek M. Bickhart; Robert T. DeBoy; Karen E. Nelson; Camilla L. Nesbø; W. Ford Doolittle; J. Peter Gogarten; Kenneth M. Noll

Since publication of the first Thermotogales genome, Thermotoga maritima strain MSB8, single- and multi-gene analyses have disagreed on the phylogenetic position of this order of Bacteria. Here we present the genome sequences of 4 additional members of the Thermotogales (Tt. petrophila, Tt. lettingae, Thermosipho melanesiensis, and Fervidobacterium nodosum) and a comprehensive comparative analysis including the original T. maritima genome. While ribosomal protein genes strongly place Thermotogales as a sister group to Aquificales, the majority of genes with sufficient phylogenetic signal show affinities to Archaea and Firmicutes, especially Clostridia. Indeed, on the basis of the majority of genes in their genomes (including genes that are also found in Aquificales), Thermotogales should be considered members of the Firmicutes. This result highlights the conflict between the taxonomic goal of assigning every species to a unique position in an inclusive Linnaean hierarchy and the evolutionary goal of understanding phylogenesis in the presence of pervasive horizontal gene transfer (HGT) within prokaryotes. Amino acid compositions of reconstructed ancestral sequences from 423 gene families suggest an origin of this gene pool even more thermophilic than extant members of this order, followed by adaptation to lower growth temperatures within the Thermotogales.


BMC Evolutionary Biology | 2009

Conservation of intron and intein insertion sites: implications for life histories of parasitic genetic elements

Kristen S. Swithers; Alireza G. Senejani; Gregory P. Fournier; J. Peter Gogarten

BackgroundInteins and introns are genetic elements that are removed from proteins and RNA after translation or transcription, respectively. Previous studies have suggested that these genetic elements are found in conserved parts of the host protein. To our knowledge this type of analysis has not been done for group II introns residing within a gene. Here we provide quantitative statistical support from an analyses of proteins that host inteins, group I introns, group II introns and spliceosomal introns across all three domains of life.ResultsTo determine whether or not inteins, group I, group II, and spliceosomal introns are found preferentially in conserved regions of their respective host protein, conservation profiles were generated and intein and intron positions were mapped to the profiles. Fishers combined probability test was used to determine the significance of the distribution of insertion sites across the conservation profile for each protein. For a subset of studied proteins, the conservation profile and insertion positions were mapped to protein structures to determine if the insertion sites correlate to regions of functional activity. All inteins and most group I introns were found to be preferentially located within conserved regions; in contrast, a bacterial intein-like protein, group II and spliceosomal introns did not show a preference for conserved sites.ConclusionsThese findings demonstrate that inteins and group I introns are found preferentially in conserved regions of their respective host proteins. Homing endonucleases are often located within inteins and group I introns and these may facilitate mobility to conserved regions. Insertion at these conserved positions decreases the chance of elimination, and slows deletion of the elements, since removal of the elements has to be precise as not to disrupt the function of the protein. Furthermore, functional constrains on the targeted site make it more difficult for hosts to evolve immunity to the homing endonuclease. Therefore, these elements will better survive and propagate as molecular parasites in conserved sites. In contrast, spliceosomal introns and group II introns do not show significant preference for conserved sites and appear to have adopted a different strategy to evade loss.


Biology Direct | 2011

A Rooted Net of Life

David Williams; Gregory P. Fournier; Pascal Lapierre; Kristen S. Swithers; Anna G. Green; Cheryl P. Andam; J. Peter Gogarten

Phylogenetic reconstruction using DNA and protein sequences has allowed the reconstruction of evolutionary histories encompassing all life. We present and discuss a means to incorporate much of this rich narrative into a single model that acknowledges the discrete evolutionary units that constitute the organism. Briefly, this Rooted Net of Life genome phylogeny is constructed around an initial, well resolved and rooted tree scaffold inferred from a supermatrix of combined ribosomal genes. Extant sampled ribosomes form the leaves of the tree scaffold. These leaves, but not necessarily the deeper parts of the scaffold, can be considered to represent a genome or pan-genome, and to be associated with members of other gene families within that sequenced (pan)genome. Unrooted phylogenies of gene families containing four or more members are reconstructed and superimposed over the scaffold. Initially, reticulations are formed where incongruities between topologies exist. Given sufficient evidence, edges may then be differentiated as those representing vertical lines of inheritance within lineages and those representing horizontal genetic transfers or endosymbioses between lineages.ReviewersW. Ford Doolittle, Eric Bapteste and Robert Beiko.


Frontiers in Microbiology | 2014

Population and genomic analysis of the genus Halorubrum.

Matthew S. Fullmer; Shannon M. Soucy; Kristen S. Swithers; Andrea M. Makkay; Ryan Wheeler; Antonio Ventosa; J. Peter Gogarten; R. Thane Papke

The Halobacteria are known to engage in frequent gene transfer and homologous recombination. For stably diverged lineages to persist some checks on the rate of between lineage recombination must exist. We surveyed a group of isolates from the Aran-Bidgol endorheic lake in Iran and sequenced a selection of them. Multilocus Sequence Analysis (MLSA) and Average Nucleotide Identity (ANI) revealed multiple clusters (phylogroups) of organisms present in the lake. Patterns of intein and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) presence/absence and their sequence similarity, GC usage along with the ANI and the identities of the genes used in the MLSA revealed that two of these clusters share an exchange bias toward others in their phylogroup while showing reduced rates of exchange with other organisms in the environment. However, a third cluster, composed in part of named species from other areas of central Asia, displayed many indications of variability in exchange partners, from within the lake as well as outside the lake. We conclude that barriers to gene exchange exist between the two purely Aran-Bidgol phylogroups, and that the third cluster with members from other regions is not a single population and likely reflects an amalgamation of several populations.


PLOS ONE | 2013

Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

Nicholas C. Butzin; Pascal Lapierre; Anna G. Green; Kristen S. Swithers; J. Peter Gogarten; Kenneth M. Noll

The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.


Journal of Bacteriology | 2011

Genome Sequence of Kosmotoga olearia Strain TBF 19.5.1, a Thermophilic Bacterium with a Wide Growth Temperature Range, Isolated from the Troll B Oil Platform in the North Sea

Kristen S. Swithers; J. L. DiPippo; David Bruce; Chris Detter; Roxanne Tapia; Shunsheng Han; Lynne Goodwin; James Han; T. Woyke; Samuel Pitluck; Len A. Pennacchio; Matt Nolan; Natalia Mikhailova; Miriam Land; Camilla L. Nesbø; J. P. Gogarten; Kenneth M. Noll

Kosmotoga olearia strain TBF 19.5.1 is a member of the Thermotogales that grows best at 65°C and very well even at 37°C. Information about this organism is important for understanding the evolution of mesophiles from thermophiles. Its genome sequence reveals extensive gene gains and a large content of mobile genetic elements. It also contains putative hydrogenase genes that have no homologs in the other member of the Thermotogales.


International Journal of Evolutionary Biology | 2012

The Role of Reticulate Evolution in Creating Innovation and Complexity

Kristen S. Swithers; Shannon M. Soucy; J. Peter Gogarten

Reticulate evolution encompasses processes that conflict with traditional Tree of Life efforts. These processes, horizontal gene transfer (HGT), gene and whole-genome duplications through allopolyploidization, are some of the main driving forces for generating innovation and complexity. HGT has a profound impact on prokaryotic and eukaryotic evolution. HGTs can lead to the invention of new metabolic pathways and the expansion and enhancement of previously existing pathways. It allows for organismal adaptation into new ecological niches and new host ranges. Although many HGTs appear to be selected for because they provide some benefit to their recipient lineage, other HGTs may be maintained by chance through random genetic drift. Moreover, some HGTs that may initially seem parasitic in nature can cause complexity to arise through pathways of neutral evolution. Another mechanism for generating innovation and complexity, occurring more frequently in eukaryotes than in prokaryotes, is gene and genome duplications, which often occur through allopolyploidizations. We discuss how these different evolutionary processes contribute to generating innovation and complexity.


Genome Biology and Evolution | 2012

Genome sequence of the mesophilic Thermotogales bacterium Mesotoga prima MesG1.Ag.4.2 reveals the largest Thermotogales genome to date.

Olga Zhaxybayeva; Kristen S. Swithers; Julia M. Foght; Anna G. Green; David Bruce; Chris Detter; Shunsheng Han; Hazuki Teshima; James Han; Tanja Woyke; Sam Pitluck; Matt Nolan; Natalia Ivanova; Amrita Pati; Miriam Land; Marlena Dlutek; W. Ford Doolittle; Kenneth M. Noll; Camilla L. Nesbø

Here we describe the genome of Mesotoga prima MesG1.Ag4.2, the first genome of a mesophilic Thermotogales bacterium. Mesotoga prima was isolated from a polychlorinated biphenyl (PCB)-dechlorinating enrichment culture from Baltimore Harbor sediments. Its 2.97 Mb genome is considerably larger than any previously sequenced Thermotogales genomes, which range between 1.86 and 2.30 Mb. This larger size is due to both higher numbers of protein-coding genes and larger intergenic regions. In particular, the M. prima genome contains more genes for proteins involved in regulatory functions, for instance those involved in regulation of transcription. Together with its closest relative, Kosmotoga olearia, it also encodes different types of proteins involved in environmental and cell–cell interactions as compared with other Thermotogales bacteria. Amino acid composition analysis of M. prima proteins implies that this lineage has inhabited low-temperature environments for a long time. A large fraction of the M. prima genome has been acquired by lateral gene transfer (LGT): a DarkHorse analysis suggests that 766 (32%) of predicted protein-coding genes have been involved in LGT after Mesotoga diverged from the other Thermotogales lineages. A notable example of a lineage-specific LGT event is a reductive dehalogenase gene—a key enzyme in dehalorespiration, indicating M. prima may have a more active role in PCB dechlorination than was previously assumed.


Journal of Bacteriology | 2011

Genome Sequence of Thermotoga sp. Strain RQ2, a Hyperthermophilic Bacterium Isolated from a Geothermally Heated Region of the Seafloor near Ribeira Quente, the Azores

Kristen S. Swithers; J. L. DiPippo; David Bruce; Chris Detter; Roxanne Tapia; Shunsheng Han; Elizabeth Saunders; Lynne Goodwin; James Han; T. Woyke; Samuel Pitluck; Len A. Pennacchio; Matt Nolan; Natalia Mikhailova; Athanasios Lykidis; Miriam Land; Thomas Brettin; K. O. Stetter; Karen E. Nelson; J. P. Gogarten; Kenneth M. Noll

Thermotoga sp. strain RQ2 is probably a strain of Thermotoga maritima. Its complete genome sequence allows for an examination of the extent and consequences of gene flow within Thermotoga species and strains. Thermotoga sp. RQ2 differs from T. maritima in its genes involved in myo-inositol metabolism. Its genome also encodes an apparent fructose phosphotransferase system (PTS) sugar transporter. This operon is also found in Thermotoga naphthophila strain RKU-10 but no other Thermotogales. These are the first reported PTS transporters in the Thermotogales.


The ISME Journal | 2015

Evidence for extensive gene flow and Thermotoga subpopulations in subsurface and marine environments

Camilla L. Nesbø; Kristen S. Swithers; Håkon Dahle; Thomas Ha Haverkamp; Nils-Kåre Birkeland; Tatiana Sokolova; Ilya V. Kublanov; Olga Zhaxybayeva

Oil reservoirs represent a nutrient-rich ecological niche of the deep biosphere. Although most oil reservoirs are occupied by microbial populations, when and how the microbes colonized these environments remains unanswered. To address this question, we compared 11 genomes of Thermotoga maritima-like hyperthermophilic bacteria from two environment types: subsurface oil reservoirs in the North Sea and Japan, and marine sites located in the Kuril Islands, Italy and the Azores. We complemented our genomes with Thermotoga DNA from publicly available subsurface metagenomes from North America and Australia. Our analysis revealed complex non-bifurcating evolutionary history of the isolates’ genomes, suggesting high amounts of gene flow across all sampled locations, a conjecture supported by numerous recombination events. Genomes from the same type of environment tend to be more similar, and have exchanged more genes with each other than with geographically close isolates from different types of environments. Hence, Thermotoga populations of oil reservoirs do not appear isolated, a requirement of the ‘burial and isolation’ hypothesis, under which reservoir bacteria are descendants of the isolated communities buried with sediments that over time became oil reservoirs. Instead, our analysis supports a more complex view, where bacteria from subsurface and marine populations have been continuously migrating into the oil reservoirs and influencing their genetic composition. The Thermotoga spp. in the oil reservoirs in the North Sea and Japan probably entered the reservoirs shortly after they were formed. An Australian oil reservoir, on the other hand, was likely colonized very recently, perhaps during human reservoir development.

Collaboration


Dive into the Kristen S. Swithers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth M. Noll

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Gregory P. Fournier

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Pascal Lapierre

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna G. Green

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Detter

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David Bruce

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James Han

Joint Genome Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge