Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pascal Lapierre is active.

Publication


Featured researches published by Pascal Lapierre.


Proceedings of the National Academy of Sciences of the United States of America | 2009

On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales

Olga Zhaxybayeva; Kristen S. Swithers; Pascal Lapierre; Gregory P. Fournier; Derek M. Bickhart; Robert T. DeBoy; Karen E. Nelson; Camilla L. Nesbø; W. Ford Doolittle; J. Peter Gogarten; Kenneth M. Noll

Since publication of the first Thermotogales genome, Thermotoga maritima strain MSB8, single- and multi-gene analyses have disagreed on the phylogenetic position of this order of Bacteria. Here we present the genome sequences of 4 additional members of the Thermotogales (Tt. petrophila, Tt. lettingae, Thermosipho melanesiensis, and Fervidobacterium nodosum) and a comprehensive comparative analysis including the original T. maritima genome. While ribosomal protein genes strongly place Thermotogales as a sister group to Aquificales, the majority of genes with sufficient phylogenetic signal show affinities to Archaea and Firmicutes, especially Clostridia. Indeed, on the basis of the majority of genes in their genomes (including genes that are also found in Aquificales), Thermotogales should be considered members of the Firmicutes. This result highlights the conflict between the taxonomic goal of assigning every species to a unique position in an inclusive Linnaean hierarchy and the evolutionary goal of understanding phylogenesis in the presence of pervasive horizontal gene transfer (HGT) within prokaryotes. Amino acid compositions of reconstructed ancestral sequences from 423 gene families suggest an origin of this gene pool even more thermophilic than extant members of this order, followed by adaptation to lower growth temperatures within the Thermotogales.


Protoplasma | 2005

Ancient gene duplications and the root(s) of the tree of life

Olga Zhaxybayeva; Pascal Lapierre; J. Peter Gogarten

Summary.Tracing organismal histories on the timescale of the tree of life remains one of the challenging tasks in evolutionary biology. The hotly debated questions include the evolutionary relationship between the three domains of life (e.g., which of the three domains are sister domains, are the domains para-, poly-, or monophyletic) and the location of the root within the universal tree of life. For the latter, many different points of view have been considered but so far no consensus has been reached. The only widely accepted rationale to root the universal tree of life is to use anciently duplicated paralogous genes that are present in all three domains of life. To date only few anciently duplicated gene families useful for phylogenetic reconstruction have been identified. Here we present results from a systematic search for ancient gene duplications using twelve representative, completely sequenced, archaeal and bacterial genomes. Phylogenetic analyses of identified cases show that the majority of datasets support a root between Archaea and Bacteria; however, some datasets support alternative hypotheses, and all of them suffer from a lack of strong phylogenetic signal. The results are discussed with respect to the impact of horizontal gene transfer on the ability to reconstruct organismal evolution. The exchange of genetic information between divergent organisms gives rise to mosaic genomes, where different genes in a genome have different histories. Simulations show that even low rates of horizontal gene transfer dramatically complicate the reconstruction of organismal evolution, and that the different most recent common molecular ancestors likely existed at different times and in different lineages.


BMC Genomics | 2009

Insertion sequence content reflects genome plasticity in strains of the root nodule actinobacterium Frankia

Derek M. Bickhart; Johann Peter Gogarten; Pascal Lapierre; Louis S. Tisa; Philippe Normand; David R. Benson

BackgroundGenome analysis of three Frankia sp. strains has revealed a high number of transposable elements in two of the strains. Twelve out of the 20 major families of bacterial Insertion Sequence (IS) elements are represented in the 148 annotated transposases of Frankia strain HFPCcI3 (CcI3) comprising 3% of its total coding sequences (CDS). EAN1pec (EAN) has 183 transposase ORFs from 13 IS families comprising 2.2% of its CDS. Strain ACN14a (ACN) differs significantly from the other strains with only 33 transposase ORFs (0.5% of the total CDS) from 9 IS families.ResultsInsertion sequences in the Frankia genomes were analyzed using BLAST searches, PHYML phylogenies and the IRF (Inverted Repeat Finder) algorithms. To identify putative or decaying IS elements, a PSI-TBLASTN search was performed on all three genomes, identifying 36%, 39% and 12% additional putative transposase ORFs than originally annotated in strains CcI3, EAN and ACN, respectively. The distribution of transposase ORFs in each strain was then analysed using a sliding window, revealing significant clustering of elements in regions of the EAN and CcI3 genomes. Lastly the three genomes were aligned with the MAUVE multiple genome alignment tool, revealing several Large Chromosome Rearrangement (LCR) events; many of which correlate to transposase clusters.ConclusionAnalysis of transposase ORFs in Frankia sp. revealed low inter-strain diversity of transposases, suggesting that the majority of transposase proliferation occurred without recent horizontal transfer of novel mobile elements from outside the genus. Exceptions to this include representatives from the IS3 family in strain EAN and seven IS4 transposases in all three strains that have a lower G+C content, suggesting recent horizontal transfer. The clustering of transposase ORFs near LCRs revealed a tendency for IS elements to be associated with regions of chromosome instability in the three strains. The results of this study suggest that IS elements may help drive chromosome differences in different Frankia sp. strains as they have adapted to a variety of hosts and environments.


Biology Direct | 2011

A Rooted Net of Life

David Williams; Gregory P. Fournier; Pascal Lapierre; Kristen S. Swithers; Anna G. Green; Cheryl P. Andam; J. Peter Gogarten

Phylogenetic reconstruction using DNA and protein sequences has allowed the reconstruction of evolutionary histories encompassing all life. We present and discuss a means to incorporate much of this rich narrative into a single model that acknowledges the discrete evolutionary units that constitute the organism. Briefly, this Rooted Net of Life genome phylogeny is constructed around an initial, well resolved and rooted tree scaffold inferred from a supermatrix of combined ribosomal genes. Extant sampled ribosomes form the leaves of the tree scaffold. These leaves, but not necessarily the deeper parts of the scaffold, can be considered to represent a genome or pan-genome, and to be associated with members of other gene families within that sequenced (pan)genome. Unrooted phylogenies of gene families containing four or more members are reconstructed and superimposed over the scaffold. Initially, reticulations are formed where incongruities between topologies exist. Given sufficient evidence, edges may then be differentiated as those representing vertical lines of inheritance within lineages and those representing horizontal genetic transfers or endosymbioses between lineages.ReviewersW. Ford Doolittle, Eric Bapteste and Robert Beiko.


Chromosome Research | 2012

Evolutionary insights into the role of the essential centromere protein CAL1 in Drosophila

Ragini Phansalkar; Pascal Lapierre; Barbara G. Mellone

Centromeres are essential cis-elements on chromosomes that are crucial for the stable transmission of genetic information during mitotic and meiotic cell divisions. Different species employ a variety of centromere configurations, from small genetically defined centromeres in budding yeast to holocentric centromeres that occupy entire chromosomes in Caenorhabditis, yet the incorporation of nucleosomes containing the essential centromere-specific histone H3 variant CENP-A is a common feature of centromeres in all eukaryotes. In vertebrates and fungi, CENP-A is specifically deposited at centromeres by a conserved chaperone, called HJURP or Scm3, respectively. Surprisingly, homologs of these proteins have not been identified in Drosophila, Caenorhabditis, or plants. How CENP-A is targeted to centromeres in these organisms is not known. The Drosophila centromeric protein CAL1, found only in the Diptera genus, is essential for CENP-A localization, is recruited to centromeres at a similar time as CENP-A, and interacts with CENP-A in both chromatin and pre-nucleosomal complexes, making it a strong candidate for a CENP-A chaperone in this lineage. Here, we discuss the conservation and evolution of this essential centromere factor and report the identification of a “Scm3-domain”-like region with similarity to the corresponding region of fungal Scm3 as well as a shared predicted alpha-helical structure. Given the lack of common ancestry between Scm3 and CAL1, we propose that an optimal CENP-A binding region was independently acquired by CAL1, which caused the loss of an ancestral Scm3 protein from the Diptera lineage.


Briefings in Bioinformatics | 2014

The impact of HGT on phylogenomic reconstruction methods

Pascal Lapierre; Erica Lasek-Nesselquist; Johann Peter Gogarten

Supermatrix and supertree analyses are frequently used to more accurately recover vertical evolutionary history but debate still exists over which method provides greater reliability. Traditional methods that resolve relationships among organisms from single genes are often unreliable because of the frequent lack of strong phylogenetic signal and the presence of systematic artifacts. Methods developed to reconstruct organismal history from multiple genes can be divided into supermatrix and supertree approaches. A supermatrix analysis consists of the concatenation of multiple genes into a single, possibly partitioned alignment, from which phylogenies are reconstructed using a variety of approaches. Supertrees build consensus trees from the topological information contained within individual gene trees. Both methods are now widely used and have been demonstrated to solve previously ambiguous or unresolved phylogenies with high statistical support. However, the amount of misleading signal needed to induce erroneous phylogenies for both strategies is still unknown. Using genome simulations, we test the accuracy of supertree and supermatrix approaches in recovering the true organismal phylogeny under increased amounts of horizontally transferred genes and changes in substitution rates. Our results show that overall, supermatrix approaches are preferable when a low amount of gene transfer is suspected to be present in the dataset, while supertrees have greater reliability in the presence of a moderate amount of misleading gene transfers. In the face of very high or very low substitution rates without horizontal gene transfers, supermatrix approaches outperform supertrees as individual gene trees remain unresolved and additional sequences contribute to a congruent phylogenetic signal.


PLOS ONE | 2013

Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

Nicholas C. Butzin; Pascal Lapierre; Anna G. Green; Kristen S. Swithers; J. Peter Gogarten; Kenneth M. Noll

The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.


Frontiers in Microbiology | 2014

Metagenomic analysis of the medicinal leech gut microbiota.

Michele Maltz; Lindsey Bomar; Pascal Lapierre; Hilary G. Morrison; Emily Ann McClure; Mitchell L. Sogin; Joerg Graf

There are trillions of microbes found throughout the human body and they exceed the number of eukaryotic cells by 10-fold. Metagenomic studies have revealed that the majority of these microbes are found within the gut, playing an important role in the hosts digestion and nutrition. The complexity of the animal digestive tract, unculturable microbes, and the lack of genetic tools for most culturable microbes make it challenging to explore the nature of these microbial interactions within this niche. The medicinal leech, Hirudo verbana, has been shown to be a useful tool in overcoming these challenges, due to the simplicity of the microbiome and the availability of genetic tools for one of the two dominant gut symbionts, Aeromonas veronii. In this study, we utilize 16S rRNA gene pyrosequencing to further explore the microbial composition of the leech digestive tract, confirming the dominance of two taxa, the Rikenella-like bacterium and A. veronii. The deep sequencing approach revealed the presence of additional members of the microbial community that suggests the presence of a moderately complex microbial community with a richness of 36 taxa. The presence of a Proteus strain as a newly identified resident in the leech crop was confirmed using fluorescence in situ hybridization (FISH). The metagenome of this community was also pyrosequenced and the contigs were binned into the following taxonomic groups: Rikenella-like (3.1 MB), Aeromonas (4.5 MB), Proteus (2.9 MB), Clostridium (1.8 MB), Eryspelothrix (0.96 MB), Desulfovibrio (0.14 MB), and Fusobacterium (0.27 MB). Functional analyses on the leech gut symbionts were explored using the metagenomic data and MG-RAST. A comparison of the COG and KEGG categories of the leech gut metagenome to that of other animal digestive-tract microbiomes revealed that the leech digestive tract had a similar metabolic potential to the human digestive tract, supporting the usefulness of this system as a model for studying digestive-tract microbiomes. This study lays the foundation for more detailed metatranscriptomic studies and the investigation of symbiont population dynamics.


Genome Announcements | 2013

Draft Genome Sequence of the Moderately Halophilic Bacterium Marinobacter lipolyticus Strain SM19

R. Thane Papke; Rafael R. de la Haba; Carmen Infante-Domínguez; Dolores Pérez; Cristina Sánchez-Porro; Pascal Lapierre; Antonio Ventosa

ABSTRACT Marinobacter lipolyticus strain SM19, isolated from saline soil in Spain, is a moderately halophilic bacterium belonging to the class Gammaproteobacteria. Here, we report the draft genome sequence of this strain, which consists of a 4.0-Mb chromosome and which is able to produce the halophilic enzyme lipase LipBL.


Journal of the American Society for Mass Spectrometry | 2009

Shifting unoccupied spectral space in mass spectrum of peptide fragment ions.

Bekim Bajrami; Yu Shi; Pascal Lapierre; Xudong Yao

Ions near the high-end border of a mass defect distribution plot for native peptide fragment ions have potential as signature markers that are based on mass-to-charge ratio determination. The specificity of these marker ions, including phosphoryl ions, can be improved by removing interfering isobaric ions from the border region on the distribution plot. These interfering ions are rich in Asp and Glu content. The masses of amino acid residues and peptides are rescaled from the IUPAC scale (12C=12 u as the mass reference) to the averagine scale (averagine mass=111 u* as the mass reference with zero mass defect; u*: the mass unit on the averagine scale), using a scaling factor of 0.999493894. It is theoretically predicted that esterification of Asp and Glu side-chain carboxylates with n-butanol can achieve a sufficient retreat of the high-end border on a mass defect distribution plot based on the use of mass spectrometers with better-than-medium resolution. Theoretical calculations and laboratory experiments are performed to examine effects of various esterifications on the averagine-scale mass defect distribution of peptide fragment ions and on the specificity of two positive phosphoryl ions: the phosphotyrosine immonium ion and a cyclophosphoramidate ion.

Collaboration


Dive into the Pascal Lapierre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis S. Tisa

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Marc Bilodeau

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek M. Bickhart

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Gregory P. Fournier

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kenneth M. Noll

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge