Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna L. Cogen is active.

Publication


Featured researches published by Anna L. Cogen.


British Journal of Dermatology | 2008

Skin microbiota: a source of disease or defence?

Anna L. Cogen; Victor Nizet; Richard L. Gallo

Microbes found on the skin are usually regarded as pathogens, potential pathogens or innocuous symbiotic organisms. Advances in microbiology and immunology are revising our understanding of the molecular mechanisms of microbial virulence and the specific events involved in the host–microbe interaction. Current data contradict some historical classifications of cutaneous microbiota and suggest that these organisms may protect the host, defining them not as simple symbiotic microbes but rather as mutualistic. This review will summarize current information on bacterial skin flora including Staphylococcus, Corynebacterium, Propionibacterium, Streptococcus and Pseudomonas. Specifically, the review will discuss our current understanding of the cutaneous microbiota as well as shifting paradigms in the interpretation of the roles microbes play in skin health and disease.


Nature Medicine | 2009

Commensal bacteria regulate Toll-like receptor 3― dependent inflammation after skin injury

Yuping Lai; Anna Di Nardo; Teruaki Nakatsuji; Anke Leichtle; Yan Yang; Anna L. Cogen; Zi Rong Wu; Lora V. Hooper; Richard R. Schmidt; Sonja von Aulock; Katherine A. Radek; Chun-Ming Huang; Allen F. Ryan; Richard L. Gallo

The normal microflora of the skin includes staphylococcal species that will induce inflammation when present below the dermis but are tolerated on the epidermal surface without initiating inflammation. Here we reveal a previously unknown mechanism by which a product of staphylococci inhibits skin inflammation. This inhibition is mediated by staphylococcal lipoteichoic acid (LTA) and acts selectively on keratinocytes triggered through Toll-like receptor 3(TLR3). We show that TLR3 activation is required for normal inflammation after injury and that keratinocytes require TLR3 to respond to RNA from damaged cells with the release of inflammatory cytokines. Staphylococcal LTA inhibits both inflammatory cytokine release from keratinocytes and inflammation triggered by injury through a TLR2-dependent mechanism. To our knowledge, these findings show for the first time that the skin epithelium requires TLR3 for normal inflammation after wounding and that the microflora can modulate specific cutaneous inflammatory responses.


Cell Host & Microbe | 2010

Statins Enhance Formation of Phagocyte Extracellular Traps

Ohn Chow; Maren von Köckritz-Blickwede; A. Taylor Bright; Mary E. Hensler; Annelies S. Zinkernagel; Anna L. Cogen; Richard L. Gallo; Marc Monestier; Yanming Wang; Christopher K. Glass; Victor Nizet

Statins are inhibitors of 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in cholesterol biosynthesis. Recent clinico-epidemiologic studies correlate patients receiving statin therapy with having reduced mortality associated with severe bacterial infection. Investigating the effect of statins on the innate immune capacity of phagocytic cells against the human pathogen Staphylococcus aureus, we uncovered a beneficial effect of statins on bacterial clearance by phagocytes, although, paradoxically, both phagocytosis and oxidative burst were inhibited. Probing instead for an extracellular mechanism of killing, we found that statins boosted the production of antibacterial DNA-based extracellular traps (ETs) by human and murine neutrophils and also monocytes/macrophages. The effect of statins to induce phagocyte ETs was linked to sterol pathway inhibition. We conclude that a drug therapy taken chronically by millions alters the functional behavior of phagocytic cells, which could have ramifications for susceptibility and response to bacterial infections in these patients.


Journal of Biological Chemistry | 2009

NLRP3/Cryopyrin Is Necessary for Interleukin-1β (IL-1β) Release in Response to Hyaluronan, an Endogenous Trigger of Inflammation in Response to Injury

Kenshi Yamasaki; Jun Muto; Kristen R. Taylor; Anna L. Cogen; David Audish; John Bertin; Ethan P. Grant; Anthony J. Coyle; Amirhossein Misaghi; Hal M. Hoffman; Richard L. Gallo

Inflammation under sterile conditions is a key event in autoimmunity and following trauma. Hyaluronan, a glycosaminoglycan released from the extracellular matrix after injury, acts as an endogenous signal of trauma and can trigger chemokine release in injured tissue. Here, we investigated whether NLRP3/cryopyrin, a component of the inflammasome, participates in the inflammatory response to injury or the cytokine response to hyaluronan. Mice with a targeted deletion in cryopyrin showed a normal increase in Cxcl2 in response to sterile injuries but had decreased inflammation and release of interleukin-1β (IL-1β). Similarly, the addition of hyaluronan to macrophages derived from cryopyrin-deficient mice increased release of Cxcl2 but did not increase IL-1β release. To define the mechanism of hyaluronan-mediated activation of cryopyrin, elements of the hyaluronan recognition process were studied in detail. IL-1β release was inhibited in peritoneal macrophages derived from CD44-deficient mice, in an MH-S macrophage cell line treated with antibodies to CD44, or by inhibitors of lysosome function. The requirement for CD44 binding and hyaluronan internalization could be bypassed by intracellular administration of hyaluronan oligosaccharides (10–18-mer) in lipopolysaccharide-primed macrophages. Therefore, the action of CD44 and subsequent hyaluronan catabolism trigger the intracellular cryopyrin → IL-1β pathway. These findings support the hypothesis that hyaluronan works through IL-1β and the cryopyrin system to signal sterile inflammation.


Journal of Investigative Dermatology | 2010

Activation of TLR2 by a Small Molecule Produced by Staphylococcus epidermidis Increases Antimicrobial Defense against Bacterial Skin Infections

Yuping Lai; Anna L. Cogen; Katherine A. Radek; Hyun Jeong Park; Daniel T. MacLeod; Anke Leichtle; Allen F. Ryan; Anna Di Nardo; Richard L. Gallo

Production of antimicrobial peptides by epithelia is an essential defense against infectious pathogens. In this study we evaluated whether the commensal microorganism Staphylococcus epidermidis may enhance production of antimicrobial peptides by keratinocytes and thus augment skin defense against infection. Exposure of cultured undifferentiated human keratinocytes to a sterile nontoxic small molecule of <10 kDa from S. epidermidis conditioned culture medium (SECM), but not similar preparations from other bacteria, enhanced human beta-defensin 2 (hBD2) and hBD3 mRNA expression and increased the capacity of cell lysates to inhibit the growth of group A Streptococcus (GAS) and S. aureus. Partial gene silencing of hBD3 inhibited this antimicrobial action. This effect was relevant in vivo as administration of SECM to mice decreased susceptibility to infection by GAS. Toll-like receptor 2 (TLR2) was important to this process as a TLR2-neutralizing antibody blocked induction of hBDs 2 and 3, and Tlr2-deficient mice did not show induction of mBD4. Taken together, these findings reveal a potential use for normal commensal bacterium S. epidermidis to activate TLR2 signaling and induce antimicrobial peptide expression, thus enabling the skin to mount an enhanced response to pathogens.


Journal of Investigative Dermatology | 2010

Selective Antimicrobial Action Is Provided by Phenol-Soluble Modulins Derived from Staphylococcus epidermidis, a Normal Resident of the Skin

Anna L. Cogen; Kenshi Yamasaki; Katheryn M. Sanchez; Robert A. Dorschner; Yuping Lai; Daniel T. MacLeod; Justin W. Torpey; Michael Otto; Victor Nizet; Judy E. Kim; Richard L. Gallo

Antimicrobial peptides serve as a first line of innate immune defense against invading organisms such as bacteria and viruses. In this study, we hypothesized that peptides produced by a normal microbial resident of human skin, Staphylococcus epidermidis, might also act as an antimicrobial shield and contribute to normal defense at the epidermal interface. We show by circular dichroism and tryptophan spectroscopy that phenol-soluble modulins (PSMs) gamma and delta produced by S. epidermidis have an alpha-helical character and a strong lipid membrane interaction similar to mammalian AMPs such as LL-37. Both PSMs directly induced lipid vesicle leakage and exerted selective antimicrobial action against skin pathogens such as Staphylococcus aureus. PSMs functionally cooperated with each other and LL-37 to enhance antimicrobial action. Moreover, PSMs reduced Group A Streptococcus (GAS) but not the survival of S. epidermidis on mouse skin. Thus, these data suggest that the production of PSMgamma and PSMdelta by S. epidermidis can benefit cutaneous immune defense by selectively inhibiting the survival of skin pathogens while maintaining the normal skin microbiome.


Development | 2006

Isl1Cre reveals a common Bmp pathway in heart and limb development

Lei Yang; Chen-Leng Cai; Lizhu Lin; Yibing Qyang; Christine B. Chung; Rui Monteiro; Glenn I. Fishman; Anna L. Cogen; Sylvia M. Evans

A number of human congenital disorders present with both heart and limb defects, consistent with common genetic pathways. We have recently shown that the LIM homeodomain transcription factor islet 1 (Isl1) marks a subset of cardiac progenitors. Here, we perform lineage studies with an Isl1Cre mouse line to demonstrate that Isl1 also marks a subset of limb progenitors. In both cardiac and limb progenitors, Isl1 expression is downregulated as progenitors migrate in to form either heart or limb. To investigate common heart-limb pathways in Isl1-expressing progenitors, we ablated the Type I Bmp receptor, Bmpr1a utilizing Isl1Cre/+. Analysis of consequent heart and limb phenotypes has revealed novel requirements for Bmp signaling. Additionally, we find that Bmp signaling in Isl1-expressing progenitors is required for expression of T-box transcription factors Tbx2 and Tbx3 in heart and limb. Tbx3 is required for heart and limb formation, and is mutated in ulnar-mammary syndrome. We provide evidence that the Tbx3 promoter is directly regulated by Bmp Smads in vivo.


Journal of Investigative Dermatology | 2011

TLR2 Expression Is Increased in Rosacea and Stimulates Enhanced Serine Protease Production by Keratinocytes

Kenshi Yamasaki; Kimberly Natee Kanada; Daniel T. MacLeod; Andrew W. Borkowski; Shin Morizane; Teruaki Nakatsuji; Anna L. Cogen; Richard L. Gallo

A diverse environment challenges skin to maintain temperature, hydration, and electrolyte balance while also maintaining normal immunological function. Rosacea is a common skin disease that manifests unique inflammatory responses to normal environmental stimuli. We hypothesized that abnormal function of innate immune pattern recognition could explain the enhanced sensitivity of patients with rosacea, and observed that the epidermis of patients with rosacea expressed higher amounts of Toll-like receptor 2 (TLR2) than normal patients. Increased expression of TLR2 was not seen in other inflammatory skin disorders such as atopic dermatitis or psoriasis. Overexpression of TLR2 on keratinocytes, treatment with TLR2 ligands, and analysis of TLR2-deficient mice resulted in a calcium-dependent release of kallikrein 5 from keratinocytes, a critical protease involved in the pathogenesis of rosacea. These observations show that abnormal TLR2 function may explain enhanced inflammatory responses to environmental stimuli and can act as a critical element in the pathogenesis of rosacea.


PLOS ONE | 2010

Staphylococcus epidermidis Antimicrobial δ-Toxin (Phenol-Soluble Modulin-γ) Cooperates with Host Antimicrobial Peptides to Kill Group A Streptococcus

Anna L. Cogen; Kenshi Yamasaki; Jun Muto; Katheryn M. Sanchez; Laura E. Crotty Alexander; Jackelyn Tanios; Yuping Lai; Judy E. Kim; Victor Nizet; Richard L. Gallo

Antimicrobial peptides play an important role in host defense against pathogens. Recently, phenol-soluble modulins (PSMs) from Staphylococcus epidermidis (S. epidermidis) were shown to interact with lipid membranes, form complexes, and exert antimicrobial activity. Based on the abundance and innocuity of the cutaneous resident S. epidermidis, we hypothesized that their PSMs contribute to host defense. Here we show that S. epidermidis δ-toxin (PSMγ) is normally present in the epidermis and sparsely in the dermis of human skin using immunohistochemistry. Synthetic δ-toxin interacted with neutrophil extracellular traps (NETs) and colocalized with cathelicidin while also inducing NET formation in human neutrophils. In antimicrobial assays against Group A Streptococcus (GAS), δ-toxin cooperated with CRAMP, hBD2, and hBD3. In whole blood, addition of δ-toxin exerted a bacteriostatic effect on GAS, and in NETs, δ-toxin increased their killing capacity against this pathogen. Coimmunoprecipitation and tryptophan spectroscopy demonstrated direct binding of δ-toxin to host antimicrobial peptides LL-37, CRAMP, hBD2, and hBD3. Finally, in a mouse wound model, GAS survival was reduced (along with Mip-2 cytokine levels) when the wounds were pretreated with δ-toxin. Thus, these data suggest that S. epidermidis–derived δ-toxin cooperates with the host-derived antimicrobial peptides in the innate immune system to reduce survival of an important human bacterial pathogen.


Journal of Immunology | 2012

Skin Mast Cells Protect Mice against Vaccinia Virus by Triggering Mast Cell Receptor S1PR2 and Releasing Antimicrobial Peptides

Zhenping Wang; Yuping Lai; Jamie J. Bernard; Daniel T. MacLeod; Anna L. Cogen; Bernard Moss; Anna Di Nardo

Mast cells (MCs) are well-known effectors of allergic reactions and are considered sentinels in the skin and mucosa. In addition, through their production of cathelicidin, MCs have the capacity to oppose invading pathogens. We therefore hypothesized that MCs could act as sentinels in the skin against viral infections using antimicrobial peptides. In this study, we demonstrate that MCs react to vaccinia virus (VV) and degranulate using a membrane-activated pathway that leads to antimicrobial peptide discharge and virus inactivation. This finding was supported using a mouse model of viral infection. MC-deficient (Kitwsh−/−) mice were more susceptible to skin VV infection than the wild type animals, whereas Kitwsh−/− mice reconstituted with MCs in the skin showed a normal response to VV. Using MCs derived from mice deficient in cathelicidin antimicrobial peptide, we showed that antimicrobial peptides are one important antiviral granule component in in vivo skin infections. In conclusion, we demonstrate that MC presence protects mice from VV skin infection, MC degranulation is required for protecting mice from VV, neutralizing Ab to the L1 fusion entry protein of VV inhibits degranulation apparently by preventing S1PR2 activation by viral membrane lipids, and antimicrobial peptide release from MC granules is necessary to inactivate VV infectivity.

Collaboration


Dive into the Anna L. Cogen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Nizet

University of California

View shared research outputs
Top Co-Authors

Avatar

Yuping Lai

East China Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Di Nardo

University of California

View shared research outputs
Top Co-Authors

Avatar

Judy E. Kim

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Muto

Aichi Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge