Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel T. MacLeod is active.

Publication


Featured researches published by Daniel T. MacLeod.


Journal of Investigative Dermatology | 2010

Activation of TLR2 by a Small Molecule Produced by Staphylococcus epidermidis Increases Antimicrobial Defense against Bacterial Skin Infections

Yuping Lai; Anna L. Cogen; Katherine A. Radek; Hyun Jeong Park; Daniel T. MacLeod; Anke Leichtle; Allen F. Ryan; Anna Di Nardo; Richard L. Gallo

Production of antimicrobial peptides by epithelia is an essential defense against infectious pathogens. In this study we evaluated whether the commensal microorganism Staphylococcus epidermidis may enhance production of antimicrobial peptides by keratinocytes and thus augment skin defense against infection. Exposure of cultured undifferentiated human keratinocytes to a sterile nontoxic small molecule of <10 kDa from S. epidermidis conditioned culture medium (SECM), but not similar preparations from other bacteria, enhanced human beta-defensin 2 (hBD2) and hBD3 mRNA expression and increased the capacity of cell lysates to inhibit the growth of group A Streptococcus (GAS) and S. aureus. Partial gene silencing of hBD3 inhibited this antimicrobial action. This effect was relevant in vivo as administration of SECM to mice decreased susceptibility to infection by GAS. Toll-like receptor 2 (TLR2) was important to this process as a TLR2-neutralizing antibody blocked induction of hBDs 2 and 3, and Tlr2-deficient mice did not show induction of mBD4. Taken together, these findings reveal a potential use for normal commensal bacterium S. epidermidis to activate TLR2 signaling and induce antimicrobial peptide expression, thus enabling the skin to mount an enhanced response to pathogens.


Journal of Investigative Dermatology | 2010

Selective Antimicrobial Action Is Provided by Phenol-Soluble Modulins Derived from Staphylococcus epidermidis, a Normal Resident of the Skin

Anna L. Cogen; Kenshi Yamasaki; Katheryn M. Sanchez; Robert A. Dorschner; Yuping Lai; Daniel T. MacLeod; Justin W. Torpey; Michael Otto; Victor Nizet; Judy E. Kim; Richard L. Gallo

Antimicrobial peptides serve as a first line of innate immune defense against invading organisms such as bacteria and viruses. In this study, we hypothesized that peptides produced by a normal microbial resident of human skin, Staphylococcus epidermidis, might also act as an antimicrobial shield and contribute to normal defense at the epidermal interface. We show by circular dichroism and tryptophan spectroscopy that phenol-soluble modulins (PSMs) gamma and delta produced by S. epidermidis have an alpha-helical character and a strong lipid membrane interaction similar to mammalian AMPs such as LL-37. Both PSMs directly induced lipid vesicle leakage and exerted selective antimicrobial action against skin pathogens such as Staphylococcus aureus. PSMs functionally cooperated with each other and LL-37 to enhance antimicrobial action. Moreover, PSMs reduced Group A Streptococcus (GAS) but not the survival of S. epidermidis on mouse skin. Thus, these data suggest that the production of PSMgamma and PSMdelta by S. epidermidis can benefit cutaneous immune defense by selectively inhibiting the survival of skin pathogens while maintaining the normal skin microbiome.


Journal of Investigative Dermatology | 2011

TLR2 Expression Is Increased in Rosacea and Stimulates Enhanced Serine Protease Production by Keratinocytes

Kenshi Yamasaki; Kimberly Natee Kanada; Daniel T. MacLeod; Andrew W. Borkowski; Shin Morizane; Teruaki Nakatsuji; Anna L. Cogen; Richard L. Gallo

A diverse environment challenges skin to maintain temperature, hydration, and electrolyte balance while also maintaining normal immunological function. Rosacea is a common skin disease that manifests unique inflammatory responses to normal environmental stimuli. We hypothesized that abnormal function of innate immune pattern recognition could explain the enhanced sensitivity of patients with rosacea, and observed that the epidermis of patients with rosacea expressed higher amounts of Toll-like receptor 2 (TLR2) than normal patients. Increased expression of TLR2 was not seen in other inflammatory skin disorders such as atopic dermatitis or psoriasis. Overexpression of TLR2 on keratinocytes, treatment with TLR2 ligands, and analysis of TLR2-deficient mice resulted in a calcium-dependent release of kallikrein 5 from keratinocytes, a critical protease involved in the pathogenesis of rosacea. These observations show that abnormal TLR2 function may explain enhanced inflammatory responses to environmental stimuli and can act as a critical element in the pathogenesis of rosacea.


Journal of Immunology | 2012

Skin Mast Cells Protect Mice against Vaccinia Virus by Triggering Mast Cell Receptor S1PR2 and Releasing Antimicrobial Peptides

Zhenping Wang; Yuping Lai; Jamie J. Bernard; Daniel T. MacLeod; Anna L. Cogen; Bernard Moss; Anna Di Nardo

Mast cells (MCs) are well-known effectors of allergic reactions and are considered sentinels in the skin and mucosa. In addition, through their production of cathelicidin, MCs have the capacity to oppose invading pathogens. We therefore hypothesized that MCs could act as sentinels in the skin against viral infections using antimicrobial peptides. In this study, we demonstrate that MCs react to vaccinia virus (VV) and degranulate using a membrane-activated pathway that leads to antimicrobial peptide discharge and virus inactivation. This finding was supported using a mouse model of viral infection. MC-deficient (Kitwsh−/−) mice were more susceptible to skin VV infection than the wild type animals, whereas Kitwsh−/− mice reconstituted with MCs in the skin showed a normal response to VV. Using MCs derived from mice deficient in cathelicidin antimicrobial peptide, we showed that antimicrobial peptides are one important antiviral granule component in in vivo skin infections. In conclusion, we demonstrate that MC presence protects mice from VV skin infection, MC degranulation is required for protecting mice from VV, neutralizing Ab to the L1 fusion entry protein of VV inhibits degranulation apparently by preventing S1PR2 activation by viral membrane lipids, and antimicrobial peptide release from MC granules is necessary to inactivate VV infectivity.


Journal of Immunology | 2012

Commensal Bacteria Lipoteichoic Acid Increases Skin Mast Cell Antimicrobial Activity against Vaccinia Viruses

Zhenping Wang; Daniel T. MacLeod; Anna Di Nardo

Mast cells (MCs) are considered sentinels in the skin and mucosa. Their ability to release antimicrobial peptides, such as cathelicidin, protects against bacterial infections when the epithelial barrier is breached. We recently described that MCs defend against bacterial and viral infections through the release of cathelicidin during degranulation. In this study, we hypothesize that cathelicidin expression is induced in MCs by the activation of TLR2 from bacterial products (lipoteichoic acid) produced by commensal bacteria at the epithelial surface. Our research shows that signaling through TLR2 increases the production and expression of cathelicidin in mast cells, thereby enhancing their capacity to fight vaccinia virus. MCs deficient in cathelicidin were less efficient in killing vaccinia virus after lipoteichoic acid stimulation than wild-type cells. Moreover, the activation of TLR2 increases the MC recruitment at the skin barrier interface. Taken together, our findings reveal that the expression and control of antimicrobial peptides and TLR signaling on MCs are key in fighting viral infection. Our findings also provide new insights into the pathogenesis of skin infections and suggest potential roles for MCs and TLR2 ligands in antiviral therapy.


Journal of Investigative Dermatology | 2009

Bcl-3 Acts as an Innate Immune Modulator by Controlling Antimicrobial Responses in Keratinocytes

Amanda S. Büchau; Daniel T. MacLeod; Shin Morizane; Paul Kotol; Tissa Hata; Richard L. Gallo

Innate immune responses involve the production of antimicrobial peptides (AMPs), chemokines, and cytokines. We report here the identification of B-cell leukemia (Bcl)-3 as a modulator of innate immune signaling in keratinocytes. In this study, it is shown that Bcl-3 is inducible by the Th2 cytokines IL-4 and IL-13 and is overexpressed in lesional skin of atopic dermatitis (AD) patients. Bcl-3 was shown to be important to cutaneous innate immune responses as silencing of Bcl-3 by small-interfering RNA (siRNA) reversed the downregulatory effect of IL-4 on the HBD3 expression. Bcl-3 silencing enhanced vitamin D3 (1,25D3)-induced gene expression of cathelicidin AMP in keratinocytes, suggesting a negative regulatory function on cathelicidin transcription. Furthermore, 1,25D3 suppressed Bcl-3 expression in vitro and in vivo. This study identified Bcl-3 as an important modulator of cutaneous innate immune responses and its possible therapeutic role in AD.


Nature Communications | 2013

HSV-1 exploits the innate immune scavenger receptor MARCO to enhance epithelial adsorption and infection

Daniel T. MacLeod; Teruaki Nakatsuji; Kenshi Yamasaki; Lester Kobzik; Richard L. Gallo

HSV-1 is an important epithelial pathogen and has the potential for significant morbidity in humans. Here we demonstrate that a cell surface scavenger receptor, macrophage receptor with collagenous structure (MARCO), previously thought to enhance antiviral defense by enabling nucleic acid recognition, is usurped by HSV-1 and functions together with heparan sulfate proteoglycans to mediate adsorption to epithelial cells. Ligands of MARCO dramatically inhibit HSV-1 adsorption and infection of human keratinocytes and protect mice against infection. HSV-1 glycoprotein C (gC) closely co-localizes with MARCO at the cell surface, and gC binds directly to purified MARCO with high affinity. Increasing MARCO expression enhances HSV-1 infection while MARCO-/- mice have reduced susceptibility to infection by HSV-1. These findings demonstrate that HSV-1 binds to MARCO to enhance its capacity for disease, and suggests a new therapeutic target to alter pathogenicity of HSV-1 in skin infection.


Journal of Investigative Dermatology | 2015

Vaccinia virus binds to the scavenger receptor MARCO on the surface of keratinocytes

Daniel T. MacLeod; Teruaki Nakatsuji; Zhenping Wang; Anna Di Nardo; Richard L. Gallo

Patients with altered skin immunity, such as individuals with atopic dermatitis (AD), can have a life-threatening disruption of the epidermis known as eczema vaccinatum (EV) after vaccinia virus (VV) infection of the skin. Here, we sought to better understand the mechanism(s) by which VV associates with keratinocytes. The class A scavenger receptor known as MARCO (macrophage receptor with collagenous structure) is expressed on human and mouse keratinocytes and found to be abundantly expressed in the skin of patients with AD. VV bound directly to MARCO, and overexpression of MARCO increased susceptibility to VV infection. Furthermore, ligands with affinity for MARCO, or excess soluble MARCO, competitively inhibited VV infection. These findings indicate that MARCO promotes VV infection and highlights potential new therapeutic strategies for prevention of VV infection in the skin.


Molecular Therapy | 2016

200. Generation of CAR-T Cells Lacking T Cell Receptor and Human Leukocyte Antigen Using Engineered Meganucleases

Christina Pham; Aaron Martin; Jeyaraj Antony; Daniel T. MacLeod; Audrey E. Brown; Michael Nicholson; Jo Ann Hux; Caitlin Turner; Wendy Sharer; Bruce McCreedy; Victor Bartsevich; Ginger Tomberlin; Janel Lape; Jeffrey S. Smith; Derek Jantz

The manufacture of CAR-T cells depends on peripheral blood donations that contain T cells of sufficient quality and quantity. Currently, many CAR-T programs rely on autologous T cells, but several technical and commercial challenges hinder development. The majority of CAR-T trials have enrolled leukemia or lymphoma patients, many of which are unsuitable donors for CAR-T production due to their disease state or to previous treatments with lymphodepleting agents. In addition, a custom CAR-T production run for each patient is time consuming, lacks standardization and may present regulatory challenges. An alternative strategy is to source T cells from healthy donors and produce large batches of allogeneic CAR-T cells. Allogeneic T cells, however, will display mismatched human leukocyte antigens (HLA) that will be recognized by the recipients’ immune systems, contributing to immune rejection of engrafted CAR-T cells. Additionally, donor T cells will recognize the mismatched HLAs present in the recipient, contributing to graft-versus-host immune pathology. Both undesired immune responses are predicated on interactions between HLA and T cell receptors (TCR), and while the therapeutic effectiveness of CAR-T cells with targeted deletions in TCR genes has been reported by several groups, studies featuring both TCR and HLA deletion are limited. Here, we describe the use of meganucleases engineered to target regions of the TCR α chain constant region and β-2 microglobulin genes to generate TCR and HLA class I knockout primary human T cells. Both nucleases generate knockouts with approximately 75% efficiency and are well-tolerated by primary T cells from at least four separate donors. Purified double knockout cells do not demonstrate functional disadvantages in terms of proliferation or cytokine production, but do exhibit reduced allostimulatory potential toward HLA-mismatched T cells. Together, these findings demonstrate the feasibility of generating therapeutic quantities of CAR-T cells with reduced allo-reactive potential and collateral toxicity to normal tissues in recipients.


Archive | 2017

Co-stimulatory domains for use in genetically-modified cells

Derek Jantz; Aaron Martin; Jeffrey Sunman; Daniel T. MacLeod

Collaboration


Dive into the Daniel T. MacLeod's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Di Nardo

University of California

View shared research outputs
Top Co-Authors

Avatar

Anna L. Cogen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron Martin

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenping Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Yuping Lai

East China Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge