Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna M. Romaní is active.

Publication


Featured researches published by Anna M. Romaní.


Ecology | 2006

Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities.

Anna M. Romaní; Helmut Fischer; Cecilia Mille-Lindblom; Lars J. Tranvik

Fungi and bacteria are key agents in plant litter decomposition in freshwater ecosystems. However, the specific roles of these two groups and their interactions during the decomposition process are unclear. We compared the growth and patterns of degradative enzymes expressed by communities of bacteria and fungi grown separately and in coexistence on Phragmites leaves. The two groups displayed both synergistic and antagonistic interactions. Bacteria grew better together with fungi than alone. In addition, there was a negative effect of bacteria on fungi, which appeared to be caused by suppression of fungal growth and biomass accrual rather than specifically affecting enzyme activity. Fungi growing alone had a high capacity for the decomposition of plant polymers such as lignin, cellulose, and hemicellulose. In contrast, enzyme activities were in general low when bacteria grew alone, and the activity of key enzymes in the degradation of lignin and cellulose (phenol oxidase and cellobiohydrolase) was undetectable in the bacteria-only treatment. Still, biomass-specific activities of most enzymes were higher in bacteria than in fungi. The low total activity and growth of bacteria in the absence of fungi in spite of apparent high enzymatic efficiency during the degradation of many substrates suggest that fungi provide the bacteria with resources that the bacteria were not able to acquire on their own, most probably intermediate decomposition products released by fungi that could be used by bacteria.


Nature Reviews Microbiology | 2016

The ecology and biogeochemistry of stream biofilms.

Tom J. Battin; Katharina Besemer; Mia M. Bengtsson; Anna M. Romaní; Aaron I. Packmann

Streams and rivers form dense networks, shape the Earths surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribute substantially to global biogeochemical fluxes. In turn, water flow and related deliveries of nutrients and organic matter to biofilms constitute major constraints on microbial life. In this Review, we describe the ecology and biogeochemistry of stream biofilms and highlight the influence of physical and ecological processes on their structure and function. Recent advances in the study of biofilm ecology may pave the way towards a mechanistic understanding of the effects of climate and environmental change on stream biofilms and the biogeochemistry of stream ecosystems.


Environmental Toxicology and Chemistry | 2009

Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat River basin (northeast Spain).

Isabel Muñoz; Julio C. López-Doval; Marta Ricart; Marta Villagrasa; Rikke Brix; Anita Geiszinger; Antoni Ginebreda; Helena Guasch; M. José López de Alda; Anna M. Romaní; Sergi Sabater; Damià Barceló

A wide range of human pharmaceuticals are present at low concentrations in freshwater systems, particularly in sections of polluted river. These compounds show high biological activity, often associated with a high stability. These characteristics imply a potential impact of these substances on aquatic biota even when present at low environmental concentrations. Low flow conditions in Mediterranean rivers, most of which flow through densely populated areas and are subjected to intensive water use, increase the environmental risk of these emergent compounds. Here, we studied whether pharmaceuticals in river water affect the local benthic community structure (diatoms and invertebrates). For this purpose, we analyzed the occurrence of pharmaceuticals along the Llobregat River and examined the benthic community structure (diatoms and invertebrates) of this system. Some pharmaceutical products in the Llobregat River registered concentrations greater than those cited in the literature. Multivariate analyses revealed a potential causal association between the concentrations of some anti-inflammatories and beta-blockers and the abundance and biomass of several benthic invertebrates (Chironomus spp. and Tubifex tubifex). Further interpretation in terms of cause-and-effect relationships is discussed; however, it must be always taken with caution because other pollutants also may have significant contributions. Combined with further community experiments in the laboratory, our approach could be a desirable way to proceed in future risk management decisions.


Microbial Ecology | 2004

Biofilm Structure and Function and Possible Implications for Riverine DOC Dynamics

Anna M. Romaní; Helena Guasch; Isabel Muñoz; J. Ruana; E. Vilalta; T. Schwartz; F. Emtiazi; Sergi Sabater

Biofilms are major sites of carbon cycling in streams and rivers. Here we elucidate the relationship between biofilm structure and function and river DOC dynamics. Metabolism (extracellular enzymatic activity) and structure (algae, bacteria, C/N content) of light-grown (in an open channel) and dark-grown (in a dark pipe) biofilms were studied over a year, and variations in dissolved organic carbon (DOC) and biodegradable DOC (BDOC) were also recorded. A laboratory experiment on 14C-glucose uptake and DOC dynamics was also performed by incubating natural biofilms in microcosms. On the basis of our field (annual DOC budget) and laboratory results, we conclude that light-grown biofilm is, on annual average, a net DOC consumer. This biofilm showed a high monthly variability in DOC uptake/release rates, but, on average, the annual uptake rate was greater than that of the dark-grown biofilm. The higher algal biomass and greater structure of the light-grown biofilm may enhance the development of the bacterial community (bacterial biomass and activity) and microbial heterotrophic activity. In addition, the light-grown biofilm may promote abiotic adsorption because of the development of a polysaccharide matrix. In contrast, the dark-grown biofilm is highly dependent on the amount and quality of organic matter that enters the system and is more efficient in the uptake of labile molecules (higher 14C-glucose uptake rate per mgC). The positive relationships between the extracellular enzymatic activity of biofilm and DOC and BDOC content in flowing water indicate that biofilm metabolism contributes to DOC dynamics in fluvial systems. Our results show that short-term fluvial DOC dynamics is mainly due to the use and recycling of the more labile molecules. At the river ecosystem level, the potential surface area for biofilm formation and the quantity and quality of available organic carbon might determine the effects of biofilm function on DOC dynamics.


Aquatic Toxicology | 2010

Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms.

Marta Ricart; Helena Guasch; Mireia Alberch; Damià Barceló; Chloé Bonnineau; Anita Geiszinger; Marinel.la Farré; Josep Ferrer; Francesco Ricciardi; Anna M. Romaní; Soizic Morin; Lorenzo Proia; Lluís Sala; David Sureda; Sergi Sabater

Triclosan is a commonly used bactericide that survives several degradation steps in WWTP (wastewater treatment plants) and potentially reaches fluvial ecosystems. In Mediterranean areas, where water scarcity results in low dilution capacity, the potential environmental risk of triclosan is high. A set of experimental channels was used to examine the short-term effects of triclosan (from 0.05 to 500μgL⁻¹) on biofilm algae and bacteria. Environmentally relevant concentrations of triclosan caused an increase of bacterial mortality with a no effect concentration (NEC) of 0.21μgL⁻¹. Dead bacteria accounted for up to 85% of the total bacterial population at the highest concentration tested. The toxicity of triclosan was higher for bacteria than algae. Photosynthetic efficiency was inhibited with increasing triclosan concentrations (NEC=0.42μgL⁻¹), and non-photochemical quenching mechanisms decreased. Diatom cell viability was also affected with increasing concentrations of triclosan. Algal toxicity may be a result of indirect effects on the biofilm toxicity, but the clear and progressive reduction observed in all the algal-related endpoints suggest the existence of direct effects of the bactericide. The toxicity detected on the co-occurring non-target components of the biofilm community, the capacity of triclosan to survive through WWTP processes and the low dilution capacity that characterizes Mediterranean systems extend the relevance of triclosan toxicity beyond bacteria in aquatic habitats.


Chemosphere | 2009

Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria.

Marta Ricart; Damià Barceló; Anita Geiszinger; Helena Guasch; Miren López de Alda; Anna M. Romaní; Gemma Vidal; Marta Villagrasa; Sergi Sabater

A system of recirculating channels was used in this study to examine the long-term effects (29d) of environmentally realistic concentrations of the herbicide diuron (from 0.07 to 7 microg L(-1)) on biofilm communities. The autotrophic activity of biofilms was affected by this herbicide, as reflected by a marked decrease in the photosynthetic efficiency. Diuron exposure also increased chlorophyll-a content and reduced the biovolume of diatom taxa at low concentrations. The effects on bacteria were also remarkable. Bacterial abundance was reduced after a week of exposure to the herbicide at a range of concentrations. Effects were on the number of live bacteria and on the increase in the leucine-aminopeptidase activity. It is suggested that inputs of herbicides to the river ecosystem at low concentrations may cause a chain of effects in the biofilm, which include inhibitory effects on algae but also indirect effects on the relationships between biofilm components.


Science of The Total Environment | 2008

Longitudinal development of chlorophyll and phytoplankton assemblages in a regulated large river (the Ebro River).

Sergi Sabater; Joan Artigas; Concha Durán; Miriam Pardos; Anna M. Romaní; Elisabet Tornés; Irene Ylla

The distribution of chlorophyll and phytoplankton communities were compared to nutrient concentrations and hydrological parameters along the main stretch of the river Ebro. A progressive increase in planktonic chlorophyll was observed from the upper reaches to the middle section of the river. Chlorophyll reached a maximum (60-80 microg L(-1)) in the meandering section (downstream of the city of Zaragoza), where nutrient inputs (both N and P) and the residence time of the water are very high. In this meandering section phytoplankton assemblages consisted of large centric diatoms and Scenedesmus sp.pl. These longitudinal patterns were interrupted by the presence of three large reservoirs in the lower section of the river. In the section below the reservoirs, the shorter residence water time, the presence of the invasive zebra mussel, and the massive macrophyte development may explain the historical decrease in chlorophyll-a (from 20-45 microg L(-1) in the 1990s to the present 2-5 microg L(-1)). Phytoplankton densities were extremely poor in this section of the river, where large colonial Coelastrum sp.pl. and Pediastrum sp.pl. were the most characteristic taxa.


PLOS ONE | 2011

Multifunctionality and diversity in bacterial biofilms.

Hannes Peter; Irene Ylla; Cristian Gudasz; Anna M. Romaní; Sergi Sabater; Lars J. Tranvik

Bacteria are highly diverse and drive a bulk of ecosystem processes. Analysis of relationships between diversity and single specific ecosystem processes neglects the possibility that different species perform multiple functions at the same time. The degradation of dissolved organic carbon (DOC) followed by respiration is a key bacterial function that is modulated by the availability of DOC and the capability to produce extracellular enzymes. In freshwater ecosystems, biofilms are metabolic hotspots and major sites of DOC degradation. We manipulated the diversity of biofilm forming communities which were fed with DOC differing in availability. We characterized community composition using molecular fingerprinting (T-RFLP) and measured functioning as oxygen consumption rates, the conversion of DOC in the medium, bacterial abundance and the activities of five specific enzymes. Based on assays of the extracellular enzyme activity, we calculated how the likelihood of sustaining multiple functions was affected by reduced diversity. Carbon source and biofilm age were strong drivers of community functioning, and we demonstrate how the likelihood of sustaining multifunctionality decreases with decreasing diversity.


Hydrobiologia | 2010

Organic matter availability during pre- and post-drought periods in a Mediterranean stream

Irene Ylla; Isis Sanpera-Calbet; Eusebi Vazquez; Anna M. Romaní; Isabel Muñoz; Andrea Butturini; Sergi Sabater

Mediterranean streams are characterized by water flow changes caused by floods and droughts. When intermittency occurs in river ecosystems, hydrologic connectivity is interrupted and this affects benthic, hyporheic and flowing water compartments. Organic matter use and transport can be particularly affected during the transition from wet to dry and dry to wet conditions. In order to characterize the changes in benthic organic matter quantity and quality throughout a drying and rewetting process, organic matter, and enzyme activities were analyzed in the benthic accumulated material (biofilms growing on rocks and cobbles, leaves, and sand) and in flowing water (dissolved and particulate fractions). The total polysaccharide, amino acid, and lipid content in the benthic organic matter were on average higher in the drying period than in the rewetting period. However, during the drying period, peptide availability decreased, as indicated by decreases in leucine aminopeptidase activity, as well as amino acid content in the water and benthic material, except leaves; while polysaccharides were actively used, as indicated by an increase in β-glucosidase activity in the benthic substrata and an increase in polysaccharide content of the particulate water fraction and in leaf material. During this process, microbial heterotrophs were constrained to use the organic matter source of the lowest quality (polysaccharides, providing only C), since peptides (providing N and C) were no longer available. During the flow recovery phase, the microbial community rapidly recovered, suggesting the use of refuges and/or adaptation to desiccation during the previous drought period. The scouring during rewetting was responsible for the mobilization of the streambed and loss of benthic material, and the increase in high quality organic matter in transport (at that moment, polysaccharides and amino acids accounted for 30% of the total DOC). The dynamics of progressive and gradual drought effects, as well as the fast recovery after rewetting, might be affected by the interaction of the individual dynamics of each benthic substratum: sand sediments and leaves providing refuge for microorganisms and organic matter storage, while on cobbles, an active bacterial community is developed in the rewetting. Since global climate change may favor a higher intensity and frequency of droughts in streams, understanding the effects of these disturbances on the materials and biota could contribute to reliable resource management. The maintenance of benthic substrata heterogeneity within the stream may be important for stream recovery after droughts.


Biofouling | 2011

Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects

Verónica Díaz Villanueva; Jordi Font; Thomas Schwartz; Anna M. Romaní

River biofilms that grow on wet benthic surface are mainly composed of bacteria, algae, cyanobacteria and protozoa embedded in a polysaccharide matrix. The effects of increased river water temperature on biofilm formation were investigated. A laboratory experiment was designed employing two temperatures (11.1–13.2°C, night–day; 14.7–16.0°C, night–day) and two nutrient levels (0.054 mg P l−1, 0.75 mg N l−1; 0.54 mg P l−1, 7.5 mg N l−1). Biofilm formation at the higher temperature was faster, while the biomass of the mature biofilm was mainly determined by nutrient availability. The specific response of the three microbial groups that colonized the substrata (algae, bacteria and ciliates) was modulated by interactions between them. The greater bacterial growth rate and earlier bacterial colonization at the higher temperature and higher nutrient status was not translated into the accrual of higher bacterial biomass. This may result from ciliates grazing on the bacteria, as shown by an earlier increase in peritrichia at higher temperatures, and especially at high nutrient conditions. Temperature and ciliate grazing might determine the growth of a distinctive bacterial community under warming conditions. Warmer conditions also produced a thicker biofilm, while functional responses were much less evident (increases in the heterotrophic utilization of polysaccharides and peptides, but no increase in primary production and respiration). Increasing the temperature of river water might lead to faster biofilm recolonization after disturbances, with a distinct biofilm community structure that might affect the trophic web. Warming effects would be expected to be more relevant under eutrophic conditions.

Collaboration


Dive into the Anna M. Romaní's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damià Barceló

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge