Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabel Muñoz is active.

Publication


Featured researches published by Isabel Muñoz.


Environment International | 2010

Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain)

Antoni Ginebreda; Isabel Muñoz; Miren López de Alda; Rikke Brix; Julio C. López-Doval; Damià Barceló

Continuous input of pharmaceuticals into rivers, through wastewater treatment systems, may cause adverse effects on the aquatic ecosystems of the receiving waterbodies, due to the intrinsic biological activity of these compounds. To investigate this issue, we have carried out an Environmental Risk Assessment in the lower part of the Llobregat River basin (NE Spain). The survey was carried out along three campaigns in 7 sampling points, located in the main river and in one of its tributaries (Anoia River). In each sample, 29 commonly used pharmaceuticals, belonging to different therapeutical classes (analgesics and non-steroidal anti-inflammatories (NSAIDs), lipid regulators, psychiatric drugs, anti-histamines, anti-ulcer agents, antibiotics and beta-blockers) have been determined. Simultaneously, the macroinvertebrate community status of the same points has been also studied. Hazard quotient indexes have been estimated for the most representative compounds as the ratio between concentrations and EC(50) reported values, for three bioassays commonly used in environmental toxicology, namely, fish, Daphnia and algae. Hazard indexes are obtained for each sample by summing up the hazard quotients of all the compounds present, and taking its average along the three sampling campaigns. In general, hazard quotients tend to increase when going downstream. Only those points located most upstream of the two rivers can be qualified under low risk for the three bioassays. The most sensitive bioassay seems to be algae, followed by Daphnia and fish. Log-transformed hazard indexes show fairly good inverse correlations (r=-0.58 to -0.93, p<0.05) with Shannon diversity indexes of macroinvertebrates, determined from both densities and biomasses. Best correlations are obtained for Daphnia based hazard indexes, as expected from its taxonomical proximity to macroinvertebrates. The abnormal correlation behaviour found in one point located in the Anoia River is explained by the presence of other previously reported pollutants of industrial origin, generated by the nearby existing industry.


Journal of The North American Benthological Society | 2005

Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects

Vicenç Acuña; Isabel Muñoz; Adonis Giorgi; Meritxell Omella; Francesc Sabater; Sergi Sabater

Abstract The effects of the intensity of seasonal droughts on stream ecosystems were studied in the Fuirosos, an intermittent forested Mediterranean stream. Macroinvertebrate community structure and stream ecosystem metabolism were measured during seasonal summer droughts in 2001, 2002, and 2003. Ecosystem metabolism was profoundly affected by stream intermittency. Organic matter that accumulated during the dry period enhanced ecosystem respiration during the postdrought recovery. Highest biotic diversity was found at low water levels as the stream dried and contracted. Macroinvertebrate community response to drying was stepped and apparently defined by thresholds of transition from drying to cessation of flow and from the dry phase to restoration of flow. Environmental conditions changed markedly with cessation of flow, causing large changes in community structure during 2001 and 2003 (dry years). Drying caused an increase in macroinvertebrate density that peaked in isolated pools soon after flow ceased, but then decreased rapidly because of the physicochemical changes associated with fragmentation of the watercourse. The macroinvertebrate community at the end of the summer dry phase (when flow resumed) differed from the community that had been present before drying began. Differences in community structure during the summer dry period were not as marked in 2002 (a wet year) as in 2001/2003. The influence of drought on the macroinvertebrate community differed across substrata. Drying led to significant changes in density on cobbles and leaves, but not on sand. Few taxa resisted drying, and resilience to drying was the dominant response to disturbance in the Fuirosos.


Environmental Toxicology and Chemistry | 2009

Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat River basin (northeast Spain).

Isabel Muñoz; Julio C. López-Doval; Marta Ricart; Marta Villagrasa; Rikke Brix; Anita Geiszinger; Antoni Ginebreda; Helena Guasch; M. José López de Alda; Anna M. Romaní; Sergi Sabater; Damià Barceló

A wide range of human pharmaceuticals are present at low concentrations in freshwater systems, particularly in sections of polluted river. These compounds show high biological activity, often associated with a high stability. These characteristics imply a potential impact of these substances on aquatic biota even when present at low environmental concentrations. Low flow conditions in Mediterranean rivers, most of which flow through densely populated areas and are subjected to intensive water use, increase the environmental risk of these emergent compounds. Here, we studied whether pharmaceuticals in river water affect the local benthic community structure (diatoms and invertebrates). For this purpose, we analyzed the occurrence of pharmaceuticals along the Llobregat River and examined the benthic community structure (diatoms and invertebrates) of this system. Some pharmaceutical products in the Llobregat River registered concentrations greater than those cited in the literature. Multivariate analyses revealed a potential causal association between the concentrations of some anti-inflammatories and beta-blockers and the abundance and biomass of several benthic invertebrates (Chironomus spp. and Tubifex tubifex). Further interpretation in terms of cause-and-effect relationships is discussed; however, it must be always taken with caution because other pollutants also may have significant contributions. Combined with further community experiments in the laboratory, our approach could be a desirable way to proceed in future risk management decisions.


Journal of The North American Benthological Society | 2000

Effects of riparian vegetation removal on nutrient retention in a Mediterranean stream

Francesc Sabater; Andrea Butturini; Eugènia Martí; Isabel Muñoz; Anna M. Romaní; Joanne Wray; Sergi Sabater

We examined the effects of riparian vegetation removal on algal dynamics and stream nutrient retention efficiency by comparing NH4-N and PO4-P uptake lengths from a logged and an unlogged reach in Riera Major, a forested Mediterranean stream in northeastern Spain. From June to September 1995, we executed 6 short-term additions of N (as NH4Cl) and P (as Na2HPO4) in a 200-m section to measure nutrient uptake lengths. The study site included 2 clearly differentiated reaches in terms of canopy cover by riparian trees: the first 100 m were completely logged (i.e., the logged reach) and the remaining 100 m were left intact (i.e., the shaded reach). Trees were removed from the banks of the logged reach in the winter previous to our sampling. In the shaded reach, riparian vegetation was dominated by alders (Alnus glutinosa). The study was conducted during summer and fall months when differences in light availability between the 2 reaches were greatest because of forest canopy conditions. Algal biomass and % of stream surface covered by algae were higher in the logged than in the shaded reach, indicating that logging had a stimulatory effect on algae in the stream. Overall, nutrient retention efficiency was higher (i.e., shorter uptake lengths) in the logged than in the shaded reach, especially for PO4-P. Despite a greater increase in PO4-P retention efficiency relative to that of NH4-N following logging, retention efficiency for NH4-N was higher than for PO4-P in both study reaches. The PO4-P mass-transfer coefficient was correlated with primary production in both study reaches, indicating that algal activity plays an important role in controlling PO4-P dynamics in this stream. In contrast, the NH4-N mass-transfer coefficient showed a positive relationship only with % of algal coverage in the logged reach, and was not correlated with any algal-related parameter in the shaded reach. The lack of correlation with algal production suggests that mechanisms other than algal activity (i.e., microbial heterotrophic processes or abiotic mechanisms) may also influence NH4-N retention in this stream. Overall, this study shows that logging disturbances in small shaded streams may alter in-stream ecological features that lead to changes in stream nutrient retention efficiency. Moreover, it emphasizes that alteration of the tight linkage between the stream channel and the adjacent riparian zone may directly and indirectly impact biogeochemical processes with implications for stream ecosystem functioning.


Microbial Ecology | 2004

Biofilm Structure and Function and Possible Implications for Riverine DOC Dynamics

Anna M. Romaní; Helena Guasch; Isabel Muñoz; J. Ruana; E. Vilalta; T. Schwartz; F. Emtiazi; Sergi Sabater

Biofilms are major sites of carbon cycling in streams and rivers. Here we elucidate the relationship between biofilm structure and function and river DOC dynamics. Metabolism (extracellular enzymatic activity) and structure (algae, bacteria, C/N content) of light-grown (in an open channel) and dark-grown (in a dark pipe) biofilms were studied over a year, and variations in dissolved organic carbon (DOC) and biodegradable DOC (BDOC) were also recorded. A laboratory experiment on 14C-glucose uptake and DOC dynamics was also performed by incubating natural biofilms in microcosms. On the basis of our field (annual DOC budget) and laboratory results, we conclude that light-grown biofilm is, on annual average, a net DOC consumer. This biofilm showed a high monthly variability in DOC uptake/release rates, but, on average, the annual uptake rate was greater than that of the dark-grown biofilm. The higher algal biomass and greater structure of the light-grown biofilm may enhance the development of the bacterial community (bacterial biomass and activity) and microbial heterotrophic activity. In addition, the light-grown biofilm may promote abiotic adsorption because of the development of a polysaccharide matrix. In contrast, the dark-grown biofilm is highly dependent on the amount and quality of organic matter that enters the system and is more efficient in the uptake of labile molecules (higher 14C-glucose uptake rate per mgC). The positive relationships between the extracellular enzymatic activity of biofilm and DOC and BDOC content in flowing water indicate that biofilm metabolism contributes to DOC dynamics in fluvial systems. Our results show that short-term fluvial DOC dynamics is mainly due to the use and recycling of the more labile molecules. At the river ecosystem level, the potential surface area for biofilm formation and the quantity and quality of available organic carbon might determine the effects of biofilm function on DOC dynamics.


Hydrobiologia | 2002

The effect of biological factors on the efficiency of river biofilms in improving water quality

Sergi Sabater; Helena Guasch; Anna M. Romaní; Isabel Muñoz

Biofilms are an ensemble of autotrophs and heterotrophs, which are highly efficient in removing inorganic and organic compounds, as well as other chemicals, from river water. They are, therefore, key elements in the self-purification processes which occur in rivers. Biofilm function is related to several environmental factors that govern river ecosystems: physical (light, temperature, water current), chemical (nutrient availability, toxicant effects), but also biological. Among the biological factors, community composition (algae, bacteria and fungi), biofilm structure (layer arrangement and biomass accumulation), and the presence of grazers determine variations in the efficiency of the self-depuration function of biofilms in rivers. Algae and bacteria show specific abilities for nutrients and other organic and inorganic compounds, but biofilm thickness may affect these abilities, both through a decrease in diffusion and by enhancing recycling within the biofilm. Nutrient uptake and consequently the capacity of biofilm to ameliorate water quality decreases with biomass. Moreover, biofilm thickness determines the effect of toxicants, since biomass prevents their diffusion through the biofilm. Grazing interferes in the relative efficiency of biofilms, by simplifying the composition of the biofilm community and by decreasing the amount of sorption and uptake of the biofilm. Closer attention should be paid to these aspects, since they unambiguously interfere with the performance of biofilms in the amelioration of the quality of river water.


Science of The Total Environment | 2015

Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project

Alícia Navarro-Ortega; Vicenç Acuña; Alberto Bellin; Peter Burek; Giorgio Cassiani; Redouane Choukr-Allah; Sylvain Dolédec; Arturo Elosegi; Federico Ferrari; Antoni Ginebreda; Peter Grathwohl; Colin Jones; Philippe Ker Rault; Kasper Kok; Phoebe Koundouri; Ralf Ludwig; Ralf Merz; Radmila Milačič; Isabel Muñoz; Grigory Nikulin; Claudio Paniconi; Momir Paunović; Mira Petrovic; Laia Sabater; Sergi Sabater; Nikolaos Skoulikidis; Adriaan Slob; Georg Teutsch; Nikolaos Voulvoulis; Damià Barceló

Water scarcity is a serious environmental problem in many European regions, and will likely increase in the near future as a consequence of increased abstraction and climate change. Water scarcity exacerbates the effects of multiple stressors, and thus results in decreased water quality. It impacts river ecosystems, threatens the services they provide, and it will force managers and policy-makers to change their current practices. The EU-FP7 project GLOBAQUA aims at identifying the prevalence, interaction and linkages between stressors, and to assess their effects on the chemical and ecological status of freshwater ecosystems in order to improve water management practice and policies. GLOBAQUA assembles a multidisciplinary team of 21 European plus 2 non-European scientific institutions, as well as water authorities and river basin managers. The project includes experts in hydrology, chemistry, biology, geomorphology, modelling, socio-economics, governance science, knowledge brokerage, and policy advocacy. GLOBAQUA studies six river basins (Ebro, Adige, Sava, Evrotas, Anglian and Souss Massa) affected by water scarcity, and aims to answer the following questions: how does water scarcity interact with other existing stressors in the study river basins? How will these interactions change according to the different scenarios of future global change? Which will be the foreseeable consequences for river ecosystems? How will these in turn affect the services the ecosystems provide? How should management and policies be adapted to minimise the ecological, economic and societal consequences? These questions will be approached by combining data-mining, field- and laboratory-based research, and modelling. Here, we outline the general structure of the project and the activities to be conducted within the fourteen work-packages of GLOBAQUA.


Journal of Applied Phycology | 1997

Changes in atrazine toxicity throughout succession of stream periphyton communities

Helena Guasch; Isabel Muñoz; Núria Rosés; Sergi Sabater

A study was made to describe atrazine toxicity and its changes throughout succession of periphyton communities of an undisturbed Mediterranean stream. Toxicity was assessed by short-term physiological tests (concentration-effect curves of photosynthesis to atrazine) in the laboratory using artificial substrates colonized in one stream site during winter, and two stream sites (one open and the other shaded) during summer. In the winter experiment, when environmental conditions were relatively steady and chlorophyll content was low, toxicity increased according to the increases in cell density and chlorophyll content throughout colonization. EC50 (concentration inhibiting photosynthesis by 50%) was above 0.8 µM atrazine until day 16 and below 0.4 µM atrazine after three weeks. In the summer experiment, under more variable environmental conditions, the differences between the EC50 at the beginning and the end of the colonization experiments were not significant (one factor ANOVA) at the two sites. EC50 was on average 0.89 µM atrazine in the shaded site and 0.29 µM atrazine in the open site. A significant negative correlation between irradiance and EC50 was observed all the experiments were considered together (r = 0.464, n = 20, p<0.05), suggesting that light history may have an important role in the response to atrazine. This investigation reveals that the response of stream periphyton to atrazine is likely to be influenced by colonization time and the corresponding changes in algal density and community composition as well as by environmental conditions (e.g. light regime) throughout succession.


Aquatic Toxicology | 2001

Effects of atrazine on periphyton under grazing pressure.

Isabel Muñoz; Montserrat Real; Helena Guasch; Enrique Navarro; Sergi Sabater

An experiment was carried out using indoor experimental channels to assess the long-term effect (18 days) of herbivores (Physella acuta, Gastropoda) on periphyton communities exposed to low levels of atrazine (14 microg l(-1)). We hypothesized that herbivorism modifies the response of periphyton to atrazine. Carbon incorporation, chlorophyll-a content, biovolume and algal taxonomic composition in the channels that contained atrazine were not significantly different from the control channels (not receiving atrazine). In channels with grazers and atrazine, there was a significant reduction of carbon incorporation and algal density. In this treatment, physiognomic forms and algal composition were significantly different from the others. The biomass of grazers (measured as change in dry mass) was not significantly affected by the addition of atrazine. Grazers maintained low levels of periphyton biomass, enhancing algal cell exposition to toxicant and inhibiting any adaptation of the algae to the toxic exposure. The increase in atrazine toxicity with grazing not only affected the metabolism, but also the structure of the algal community, which suggests that effects were not transient but permanent.


Hydrobiologia | 2010

Organic matter availability during pre- and post-drought periods in a Mediterranean stream

Irene Ylla; Isis Sanpera-Calbet; Eusebi Vazquez; Anna M. Romaní; Isabel Muñoz; Andrea Butturini; Sergi Sabater

Mediterranean streams are characterized by water flow changes caused by floods and droughts. When intermittency occurs in river ecosystems, hydrologic connectivity is interrupted and this affects benthic, hyporheic and flowing water compartments. Organic matter use and transport can be particularly affected during the transition from wet to dry and dry to wet conditions. In order to characterize the changes in benthic organic matter quantity and quality throughout a drying and rewetting process, organic matter, and enzyme activities were analyzed in the benthic accumulated material (biofilms growing on rocks and cobbles, leaves, and sand) and in flowing water (dissolved and particulate fractions). The total polysaccharide, amino acid, and lipid content in the benthic organic matter were on average higher in the drying period than in the rewetting period. However, during the drying period, peptide availability decreased, as indicated by decreases in leucine aminopeptidase activity, as well as amino acid content in the water and benthic material, except leaves; while polysaccharides were actively used, as indicated by an increase in β-glucosidase activity in the benthic substrata and an increase in polysaccharide content of the particulate water fraction and in leaf material. During this process, microbial heterotrophs were constrained to use the organic matter source of the lowest quality (polysaccharides, providing only C), since peptides (providing N and C) were no longer available. During the flow recovery phase, the microbial community rapidly recovered, suggesting the use of refuges and/or adaptation to desiccation during the previous drought period. The scouring during rewetting was responsible for the mobilization of the streambed and loss of benthic material, and the increase in high quality organic matter in transport (at that moment, polysaccharides and amino acids accounted for 30% of the total DOC). The dynamics of progressive and gradual drought effects, as well as the fast recovery after rewetting, might be affected by the interaction of the individual dynamics of each benthic substratum: sand sediments and leaves providing refuge for microorganisms and organic matter storage, while on cobbles, an active bacterial community is developed in the rewetting. Since global climate change may favor a higher intensity and frequency of droughts in streams, understanding the effects of these disturbances on the materials and biota could contribute to reliable resource management. The maintenance of benthic substrata heterogeneity within the stream may be important for stream recovery after droughts.

Collaboration


Dive into the Isabel Muñoz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vicenç Acuña

Catalan Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Antoni Ginebreda

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Damià Barceló

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mira Petrovic

Catalan Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge