Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ines Castangia is active.

Publication


Featured researches published by Ines Castangia.


Acta Biomaterialia | 2014

Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice

Ines Castangia; Amparo Nácher; Carla Caddeo; Donatella Valenti; Anna Maria Fadda; Octavio Díez-Sales; Amparo Ruiz-Sauri; Maria Manconi

In the present work biocompatible quercetin and curcumin nanovesicles were developed as a novel approach to prevent and restore skin tissue defects on chronic cutaneous pathologies. Stable and suitable quercetin- and curcumin-loaded phospholipid vesicles, namely liposomes and penetration enhancer-containing vesicles (PEVs), were prepared. Vesicles were made from a highly biocompatible mixture of phospholipids and alternatively a natural polyphenol, quercetin or curcumin. Liposomes were obtained by adding water, while PEVs by adding polyethylene glycol 400 and Oramix®CG110 to the water phase. Transmission electron microscopy, cryogenic-transmission electron microscopy and small- and wide-angle X-ray scattering showed that vesicles were spherical, oligo- or multilamellar and small in size (112-220 nm). In vitro and in vivo tests underlined a good effectiveness of quercetin and curcumin nanovesicles in counteracting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced lesions and inflammation. Myeloperoxydase activity, used to gauge inflammation, was markedly inhibited by quercetin liposomes (59%) and curcumin liposomes and polyethylene glycol (PEG)-PEVs (∼ 68%). Histology showed that PEG-PEVs provided an extensive re-epithelization of the TPA-damaged skin, with multiple layers of thick epidermis. In conclusion, nanoentrapped polyphenols prevented the formation of skin lesions abrogating the various biochemical processes that cause epithelial loss and skin damage.


International Journal of Pharmaceutics | 2012

Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: In vitro evaluation

Lucia Montenegro; Chiara Sinico; Ines Castangia; Claudia Carbone; Giovanni Puglisi

Idebenone (IDE), a synthetic derivative of ubiquinone, shows a potent antioxidant activity that could be beneficial in the treatment of skin oxidative damages. In this work, the feasibility of targeting IDE into the upper layers of the skin by topical application of IDE-loaded solid lipid nanoparticles (SLN) was evaluated. SLN loading different amounts of IDE were prepared by the phase inversion temperature method using cetyl palmitate as solid lipid and three different non-ionic surfactants: ceteth-20, isoceteth-20 and oleth-20. All IDE loaded SLN showed a mean particle size in the range of 30-49 nm and a single peak in size distribution. In vitro permeation/penetration experiments were performed on pig skin using Franz-type diffusion cells. IDE penetration into the different skin layers depended on the type of SLN used while no IDE permeation occurred from all the SLN under investigation. The highest IDE content was found in the epidermis when SLN contained ceteth-20 or isoceteth-20 as surfactant while IDE distribution into the upper skin layers depended on the amount of IDE loaded when oleth-20 was used as surfactant. These results suggest that the SLN tested could be an interesting carrier for IDE targeting to the upper skin layers.


Colloids and Surfaces B: Biointerfaces | 2014

Improvement of quercetin protective effect against oxidative stress skin damages by incorporation in nanovesicles

Maria Letizia Manca; Ines Castangia; Carla Caddeo; Daniel Pando; Elvira Escribano; Donatella Valenti; Sandrina Lampis; Marco Zaru; Anna Maria Fadda; Maria Manconi

Quercetin was incorporated in glycerosomes, new phospholipid-glycerol vesicles, and their protective effect against oxidative stress skin damages was extensively evaluated. In particular, the concentration-dependent effect of glycerol (from 10 to 50%) on vesicle suitability as cutaneous carriers of quercetin was carefully assessed. All vesicles were unilamellar and small in size (∼80-110 nm), as confirmed by cryo-TEM observation, with a drug incorporation efficiency ranging between 81 and 91%. SAXS studies, performed to investigate the bilayer arrangement, indicated a strong, dose-dependent interaction of glycerol with the polar portions of the phospholipid molecules, while quercetin did not significantly change the bilayer packing. In vitro studies on newborn pig skin underlined the concentration-dependent ability of glycerosomes to promote quercetin accumulation in the different layers, also confirmed by confocal microscopic observation of skin treated with fluorescent vesicles. Quercetin incorporated into liposomal and glycerosomal nanoformulations showed a strong ability to scavenge free radicals (DPPH test) and protect human keratinocytes in vitro against hydrogen peroxide damage. Moreover, quercetin-loaded vesicles were avidly taken up by keratinocytes in vitro. Overall, results indicate 40 and 50% glycerosomes as promising nanosystems for the improvement of cutaneous quercetin delivery and keratinocyte protection against oxidative stress damage.


International Journal of Pharmaceutics | 2013

Effect of diclofenac and glycol intercalation on structural assembly of phospholipid lamellar vesicles.

Ines Castangia; Maria Letizia Manca; Pietro Matricardi; Chiara Sinico; Sandrina Lampis; Xavier Fernàndez-Busquets; Anna Maria Fadda; Maria Manconi

The aim of the current study was to improve the knowledge of drug-glycol-phospholipid-interactions and their effects in lamellar vesicle suitability as drug delivery systems. Liposomes were prepared using hydrogenated soy phosphatidylcholine (P90H, 60 mg/ml) and diclofenac sodium salt at two concentrations (5-10 mg/ml). To obtain innovative vesicles two permeation enhancers with glycol group, diethyleneglycol monoethyl ether and propylene glycol, were added to the water phase at different ratios (5%, 10%, and 20%). Vesicle organization was deeply investigated by physico-chemical characterization, including differential scanning calorimetry and small-angle diffraction signal analysis while macroscopic structure behavior was evaluated by rheological studies. Results evidenced that the presence of the penetration enhancer and diclofenac sodium salt led to structural rearrangements within and among vesicles forming a tridimensional and complex architecture in which vesicles were closely packed and interconnected. This new design allowed a change in the physical state of dispersions that became highly viscous liquid or soft-solid-like, thus forming an ideal system for topical application able of both adhering to the skin and delivering the drug.


Colloids and Surfaces B: Biointerfaces | 2013

Close-packed vesicles for diclofenac skin delivery and fibroblast targeting.

Maria Letizia Manca; Maria Manconi; Angela Maria Falchi; Ines Castangia; Donatella Valenti; Sandrina Lampis; Anna Maria Fadda

Concentrated and interconnected penetration enhancer containing vesicles (PEVs) are proposed as carriers for dermal delivery of diclofenac. PEVs were prepared by using a commercial phosphatidylcholine mixture (180 mg/m) and transcutol in different amounts. Conventional liposomes were also prepared and tested as control. All vesicles showed a mean size ranging from 75 to 253 nm with fairly narrow size distribution, negative zeta potential value, and drug loading capacity between 48 and 70%. SWAXS studies showed that composition affected vesicle structure and morphology: 10 and 30% transcutol PEVs were unilamellar while liposomes and 20% transcutol PEVs were multilamellar. Rheological studies demonstrated that control liposomes and 10 and 30% transcutol containing PEVs behaved as Newtonian fluids while 20% transcutol containing PEVs showed a plastic behavior. Ex vivo (trans)dermal delivery experiments showed an improved skin deposition of diclofenac when PEVs were used. Vesicle toxicity and uptake of fibroblasts, target of inflammation treatment, were evaluated by MTT test and fluorescence microscopy. Control liposomes and PEVs were both able to interact and being internalized by the 3T3 fibroblasts at all time exposure tested. Furthermore, PEVs showed to be able to reduce the in vitro drug toxicity.


Colloids and Surfaces B: Biointerfaces | 2014

Molecular arrangements and interconnected bilayer formation induced by alcohol or polyalcohol in phospholipid vesicles

Maria Letizia Manca; Ines Castangia; Pietro Matricardi; Sandrina Lampis; Xavier Fernàndez-Busquets; Anna Maria Fadda; Maria Manconi

A self-assembled hybrid phospholipid vesicular system containing various penetration enhancers - ethanol, Transcutol and propylenglycol - was prepared and characterized. The effects of the different alcohol or polyalcohols structure and their concentration on the features of the assembled vesicles were evaluated using a combination of different techniques, including cryo-transmission electron microscopy, laser light scattering, differential scanning calorimetry, small- and wide-angle X-ray scattering and rheological analysis. These techniques allow explaining the structural rearrangements of the bilayer assembly due to the alcohol or polyalcohol addition. X-ray scattering studies showed that such addition at the highest concentration (20%) allowed structure modification to oligolamellar vesicles and a bilayer transition to interdigitated phase. Rheological studies confirmed the importance of alcohol or polyalcohol in the structuring dispersions probably due to a partial tilting of phosphatidylcholine acyl chains forming interdigitated and interconnected bilayer vesicles.


Acta Biomaterialia | 2015

Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats

Ines Castangia; Amparo Nácher; Carla Caddeo; Virginia Merino; Octavio Díez-Sales; Ana Catalán-Latorre; Xavier Fernàndez-Busquets; Anna Maria Fadda; Maria Manconi

Biocompatible quercetin nanovesicles were developed by coating polyethylene glycol-containing vesicles with chitosan and nutriose, aimed at targeting the colon. Uncoated and coated vesicles were prepared using hydrogenated soy phosphatidylcholine and quercetin, a potent natural anti-inflammatory and antioxidant drug. Physicochemical characterization was carried out by light scattering, cryogenic microscopy and X-ray scattering, the results showing that vesicles were predominantly multilamellar and around 130 nm in size. The in vitro release of quercetin was investigated under different pH conditions simulating the environment of the gastrointestinal tract, and confirmed that the chitosan/nutriose coating improved the gastric resistance of vesicles, making them a potential carrier system for colon delivery. The preferential localization of fluorescent vesicles in the intestine was demonstrated using the In Vivo FX PRO Imaging System. Above all, a marked amelioration of symptoms of 2,4,6-trinitrobenzenesulfonic acid-induced colitis was observed in animals treated with quercetin-loaded coated vesicles, favoring the restoration of physiological conditions. Therefore, quercetin-loaded chitosan/nutriose-coated vesicles can represent a valuable therapeutic tool for the treatment of chronic intestinal inflammatory diseases, and presumably a preventive system, due to the synergic action of antioxidant quercetin and beneficial prebiotic effects of the chitosan/nutriose complex.


Carbohydrate Polymers | 2015

Delivery of liquorice extract by liposomes and hyalurosomes to protect the skin against oxidative stress injuries

Ines Castangia; Carla Caddeo; Maria Letizia Manca; Laura Casu; Ana Catalan Latorre; Octavio Díez-Sales; Amparo Ruiz-Sauri; Gianluigi Bacchetta; Anna Maria Fadda; Maria Manconi

Liquorice extract, obtained by percolation in ethanol of Glycyrrhiza glabra L. roots, was incorporated in liposomes and hyalurosomes, new phospholipid-sodium hyaluronate vesicles, and their protective effect against oxidative stress skin damages was probed. As a comparison, raw glycyrrhizin was also tested. All the vesicles were small in size (≤ 100 nm), with a highly negative zeta potential ensuring long-term stability, and able to incorporate a high amount of the extract. In vitro tests showed that the liquorice extract loaded in vesicles was able to scavenge DPPH free radical (80% inhibition) and to protect 3T3 fibroblasts against H2O2-induced oxidative stress, restoring the normal conditions. By contrast, glycyrrhizin showed poor antioxidant activity, and was not able to efficiently counteract the oxidative effect of H2O2. In addition, the incorporation of the liquorice extract into the vesicular systems promoted the proliferation and migration of 3T3 fibroblasts, favouring the closure of the scratched area. In vivo anti-inflammatory tests on mice confirmed the ability of the proposed nanosystems to improve the local efficacy of the extract, favouring the re-epitelization process.


Colloids and Surfaces B: Biointerfaces | 2015

Faceted phospholipid vesicles tailored for the delivery of Santolina insularis essential oil to the skin

Ines Castangia; Maria Letizia Manca; Carla Caddeo; Andrea Maxia; Sergio Murgia; Ramon Pons; Davide Demurtas; Daniel Pando; Danilo Falconieri; José Esteban Peris; Anna Maria Fadda; Maria Manconi

The aim of this work was to formulate Santolina insularis essential oil-loaded nanocarriers, namely Penetration Enhancer containing Vesicles (PEVs), evaluate the physico-chemical features and stability, and gain insights into their ability to deliver the oil to the skin. S. insularis essential oil was obtained by steam distillation, and was predominantly composed of terpenes, the most abundant being β-phellandrene (22.6%), myrcene (11.4%) and curcumenes (12.1%). Vesicles were prepared using phosphatidylcholine, and ethylene or propylene glycol were added to the water phase (10% (v/v)) to improve vesicle performances as delivery systems. Vesicles were deeply characterized by light scattering, cryogenic transmission electron microscopy and small/wide-angle X-ray scattering, the results showing polyhedral, faceted, unilamellar vesicles of ∼115 nm in size. The presence of the glycols improved vesicle stability under accelerated ageing conditions, without changes in size or migration phenomena (e.g. sedimentation and creaming). Confocal laser scanning microscopy images of pig skin treated with S. insularis formulations displayed a penetration ability of PEVs greater than that of control liposomes. Moreover, all formulations showed a marked in vitro biocompatibility in human keratinocytes. These findings suggest that the nanoformulation may be of value in enhancing the delivery of S. insularis essential oil to the skin, where it can exert its biological activities.


International Journal of Pharmaceutics | 2016

Glycerosomes: Use of hydrogenated soy phosphatidylcholine mixture and its effect on vesicle features and diclofenac skin penetration.

Maria Letizia Manca; Claudia Cencetti; Pietro Matricardi; Ines Castangia; Marco Zaru; Octavio Diez Sales; Amparo Nácher; Donatella Valenti; Anna Maria Maccioni; Anna Maria Fadda; Maria Manconi

In this work, diclofenac was encapsulated, as sodium salt, in glycerosomes containing 10, 20 or 30% of glycerol in the water phase with the aim to ameliorate its topical efficacy. Taking into account previous findings, glycerosome formulation was modified, in terms of economic suitability, using a cheap and commercially available mixture of hydrogenated soy phosphatidylcholine (P90H). P90H glycerosomes were spherical and multilamellar; photon correlation spectroscopy showed that obtained vesicles were ∼131nm, slightly larger and more polydispersed than those made with dipalmitoylphosphatidylcholine (DPPC) but, surprisingly, they were able to ameliorate the local delivery of diclofenac, which was improved with respect to previous findings, in particular using glycerosomes containing high amount of glycerol (20 and 30%). Finally, this drug delivery system showed a high in vitro biocompatibility toward human keratinocytes.

Collaboration


Dive into the Ines Castangia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Zaru

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge