Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna-Maria Hartmann is active.

Publication


Featured researches published by Anna-Maria Hartmann.


Journal of Neurochemistry | 2009

Opposite effect of membrane raft perturbation on transport activity of KCC2 and NKCC1

Anna-Maria Hartmann; Peter Blaesse; Thorsten Kranz; Meike Wenz; Jens Schindler; Kai Kaila; Eckhard Friauf; Hans Gerd Nothwang

In the majority of neurons, the intracellular Cl− concentration is set by the activity of the Na+‐K+‐2Cl− cotransporter (NKCC1) and the K+‐Cl− cotransporter (KCC2). Here, we investigated the cotransporters’ functional dependence on membrane rafts. In the mature rat brain, NKCC1 was mainly insoluble in Brij 58 and co‐distributed with the membrane raft marker flotillin‐1 in sucrose density flotation experiments. In contrast, KCC2 was found in the insoluble fraction as well as in the soluble fraction, where it co‐distributed with the non‐raft marker transferrin receptor. Both KCC2 populations displayed a mature glycosylation pattern. Disrupting membrane rafts with methyl‐β‐cyclodextrin (MβCD) increased the solubility of KCC2, yet had no effect on NKCC1. In human embryonic kidney‐293 cells, KCC2 was strongly activated by a combined treatment with MβCD and sphingomyelinase, while NKCC1 was inhibited. These data indicate that membrane rafts render KCC2 inactive and NKCC1 active. In agreement with this, inactive KCC2 of the perinatal rat brainstem largely partitioned into membrane rafts. In addition, the exposure of the transporters to MβCD and sphingomyelinase showed that the two transporters differentially interact with the membrane rafts. Taken together, membrane raft association appears to represent a mechanism for co‐ordinated regulation of chloride transporter function.


Biochemical and Biophysical Research Communications | 2009

CIP1 is an activator of the K+-Cl- cotransporter KCC2.

Meike Wenz; Anna-Maria Hartmann; Eckhard Friauf; Hans Gerd Nothwang

In most neurons, efficient setting of the intracellular Cl(-)-concentration requires the coordinated regulation of the Cl(-)-inward transporter NKCC1 and the Cl(-)-outward transporter KCC2. Previously, the cation-chloride cotransporter interacting protein 1 (CIP1) was shown to inactivate NKCC1. Here, we investigated its role for KCC2 activity. After co-expression of CIP1 and KCC2 in HEK-293 cells, a physical and functional interaction was observed. CIP1 co-purified with KCC2 in pull-down experiments and significantly increased KCC2 transport activity, as determined by 86Rb+ flux measurements. RT-PCR analysis demonstrated a ubiquitous expression during postnatal development of the rat. Real-time PCR revealed a two-fold down-regulation of CIP1 during maturation of the rat brain. Taken together, our data identify CIP1 as a potent activator of KCC2. Furthermore, the results support previous data of heteromer formation among members of the cation-chloride cotransporter gene family.


Journal of Biological Chemistry | 2010

Differences in the Large Extracellular Loop between the K+-Cl− Cotransporters KCC2 and KCC4

Anna-Maria Hartmann; Meike Wenz; Adriana Mercado; Christof Störger; David B. Mount; Eckhard Friauf; Hans Gerd Nothwang

K+Cl− cotransporters (KCCs) play fundamental physiological roles in processes such as inhibitory neurotransmission and cell volume regulation. Mammalian genomes encode four distinct KCC paralogs, which share basic transport characteristics but differ significantly in ion affinity, pharmacology, and relative sensitivity to cell volume. Studies to identify divergence in functional characteristics have thus far focused on the cytoplasmic termini. Here, we investigated sequence requirements of the large extracellular loop (LEL) for function in KCC2 and KCC4. Mutation of all four evolutionarily conserved cysteines abolished KCC2 transport activity. This behavior differs from that of its closest relative, KCC4, which is insensitive to this mutation. Chimeras supported the differences in the LEL of the two cotransporters, because swapping wild-type LEL resulted in functional KCC2 but rendered KCC4 inactive. Insertion of the quadruple cysteine substitution mutant of the KCC4 loop, which was functional in the parental isoform, abolished transport activity in KCC2. Dose-response curves of wild-type and chimeric KCCs revealed that the LEL contributes to the different sensitivity to loop diuretics; a KCC2 chimera containing the KCC4 LEL displayed an IC50 of 396.5 μm for furosemide, which was closer to KCC4 (548.8 μm) than to KCC2 (184.4 μm). Cell surface labeling and immunocytochemistry indicated that mutations do not affect trafficking to the plasma membrane. Taken together, our results show a dramatic and unexpected difference in the sequence requirements of the LEL between the closely related KCC2 and KCC4. Furthermore, they demonstrate that evolutionarily highly conserved amino acids can have different functions within KCC members.


PLOS ONE | 2012

Egr2::cre mediated conditional ablation of dicer disrupts histogenesis of mammalian central auditory nuclei.

Elena Rosengauer; Heiner Hartwich; Anna-Maria Hartmann; Anya Rudnicki; Somisetty Venkata Satheesh; Karen B. Avraham; Hans Gerd Nothwang

Histogenesis of the auditory system requires extensive molecular orchestration. Recently, Dicer1, an essential gene for generation of microRNAs, and miR-96 were shown to be important for development of the peripheral auditory system. Here, we investigated their role for the formation of the auditory brainstem. Egr2::Cre-mediated early embryonic ablation of Dicer1 caused severe disruption of auditory brainstem structures. In adult animals, the volume of the cochlear nucleus complex (CNC) was reduced by 73.5%. This decrease is in part attributed to the lack of the microneuronal shell. In contrast, fusiform cells, which similar to the granular cells of the microneural shell are derived from Egr2 positive cells, were still present. The volume reduction of the CNC was already present at birth (67.2% decrease). The superior olivary complex was also drastically affected in these mice. Nissl staining as well as Vglut1 and Calbindin 1 immunolabeling revealed that principal SOC nuclei such as the medial nucleus of the trapezoid body and the lateral superior olive were absent. Only choline acetyltransferase positive neurons of the olivocochlear bundle were observed as a densely packed cell group in the ventrolateral area of the SOC. Mid-embryonic ablation of Dicer1 in the ventral cochlear nucleus by Atoh7::Cre-mediated recombination resulted in normal formation of the cochlear nucleus complex, indicating an early embryonic requirement of Dicer1. Quantitative RT-PCR analysis of miR-96 demonstrated low expression in the embryonic brainstem and up-regulation thereafter, suggesting that other microRNAs are required for proper histogenesis of the auditory brainstem. Together our data identify a critical role of Dicer activity during embryonic development of the auditory brainstem.


Frontiers in Cellular Neuroscience | 2015

Molecular and evolutionary insights into the structural organization of cation chloride cotransporters

Anna-Maria Hartmann; Hans Gerd Nothwang

Cation chloride cotransporters (CCC) play an essential role for neuronal chloride homeostasis. K+-Cl− cotransporter (KCC2), is the principal Cl−-extruder, whereas Na+-K+-Cl− cotransporter (NKCC1), is the major Cl−-uptake mechanism in many neurons. As a consequence, the action of the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine strongly depend on the activity of these two transporters. Knowledge of the mechanisms involved in ion transport and regulation is thus of great importance to better understand normal and disturbed brain function. Although no overall 3-dimensional crystal structures are yet available, recent molecular and phylogenetic studies and modeling have provided new and exciting insights into structure-function relationships of CCC. Here, we will summarize our current knowledge of the gross structural organization of the proteins, their functional domains, ion binding and translocation sites, and the established role of individual amino acids (aa). A major focus will be laid on the delineation of shared and distinct organizational principles between KCC2 and NKCC1. Exploiting the richness of recently generated genome data across the tree of life, we will also explore the molecular evolution of these features.


Journal of Biological Chemistry | 2014

A Novel Regulatory Locus of Phosphorylation in the C Terminus of the Potassium Chloride Cotransporter KCC2 That Interferes with N-Ethylmaleimide or Staurosporine-mediated Activation

Maren Weber; Anna-Maria Hartmann; Timo Beyer; Anne Ripperger; Hans Gerd Nothwang

Background: KCC2 is a potassium-chloride cotransporter essential for hyperpolarizing neurotransmission and is associated with multiple neurological disorders. Results: Thr934 and Ser937 are major regulatory sites of KCC2 activity, and their status influences other activation processes. Conclusion: Thr934 and Ser937 phosphorylation increases KCC2 transport kinetics. Significance: This study identifies a novel C-terminal KCC2 stimulatory phosphorylation site. The neuron-specific cation chloride cotransporter KCC2 plays a crucial role in hyperpolarizing synaptic inhibition. Transporter dysfunction is associated with various neurological disorders, raising interest in regulatory mechanisms. Phosphorylation has been identified as a key regulatory process. Here, we retrieved experimentally observed phosphorylation sites of KCC2 from public databases and report on the systematic analysis of six phosphorylated serines, Ser25, Ser26, Ser937, Ser1022, Ser1025, and Ser1026. Alanine or aspartate substitutions of these residues were analyzed in HEK-293 cells. All mutants were expressed in a pattern similar to wild-type KCC2 (KCC2WT). Tl+ flux measurements demonstrated unchanged transport activity for Ser25, Ser26, Ser1022, Ser1025, and Ser1026 mutants. In contrast, KCC2S937D, mimicking phosphorylation, resulted in a significant up-regulation of transport activity. Aspartate substitution of Thr934, a neighboring putative phosphorylation site, resulted in a comparable increase in KCC2 transport activity. Both KCC2T934D and KCC2S937D mutants were inhibited by the kinase inhibitor staurosporine and by N-ethylmaleimide, whereas KCC2WT, KCC2T934A, and KCC2S937A were activated. The inverse staurosporine effect on aspartate versus alanine substitutions reveals a cross-talk between different phosphorylation sites of KCC2. Immunoblot and cell surface labeling experiments detected no alterations in total abundance or surface expression of KCC2T934D and KCC2S937D compared with KCC2WT. These data reveal kinetic regulation of transport activity by these residues. In summary, our data identify a novel key regulatory phosphorylation site of KCC2 and a functional interaction between different conformation-changing post-translational modifications. The action of pharmacological agents aimed to modulate KCC2 activity for therapeutic benefit might therefore be highly context-specific.


Frontiers in Cellular Neuroscience | 2015

Neto2-null mice have impaired GABAergic inhibition and are susceptible to seizures.

Vivek Mahadevan; Zahra Dargaei; Evgueni A. Ivakine; Anna-Maria Hartmann; David T. Ng; Jonah Chevrier; Jake Ormond; Hans Gerd Nothwang; Roderick R. McInnes; Melanie A. Woodin

Neto2 is a transmembrane protein that interacts with the neuron-specific K+-Cl− cotransporter (KCC2) in the central nervous system (CNS). Efficient KCC2 transport is essential for setting the neuronal Cl− gradient, which is required for fast GABAergic inhibition. Neto2 is required to maintain the normal abundance of KCC2 in neurons, and increases KCC2 function by binding to the active oligomeric form of this cotransporter. In the present study, we characterized GABAergic inhibition and KCC2-mediated neuronal chloride homeostasis in pyramidal neurons from adult hippocampal slices. Using gramicidin perforated patch clamp recordings we found that the reversal potential for GABA (EGABA) was significantly depolarized. We also observed that surface levels of KCC2 and phosphorylation of KCC2 serine 940 (Ser940) were reduced in Neto2−/− neurons compared to wild-type controls. To examine GABAergic inhibition we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) and found that Neto2−/− neurons had significant reductions in both their amplitude and frequency. Based on the critical role of Neto2 in regulating GABAergic inhibition we rationalized that Neto2-null mice would be prone to seizure activity. We found that Neto2-null mice demonstrated a decrease in the latency to pentylenetetrazole (PTZ)-induced seizures and an increase in seizure severity.


BMC Research Notes | 2011

Opposite temperature effect on transport activity of KCC2/KCC4 and N(K)CCs in HEK-293 cells

Anna-Maria Hartmann; Hans Gerd Nothwang

BackgroundCation chloride cotransporters play essential roles in many physiological processes such as volume regulation, transepithelial salt transport and setting the intracellular chloride concentration in neurons. They consist mainly of the inward transporters NCC, NKCC1, and NKCC2, and the outward transporters KCC1 to KCC4. To gain insight into regulatory and structure-function relationships, precise determination of their activity is required. Frequently, these analyses are performed in HEK-293 cells. Recently the activity of the inward transporters NKCC1 and NCC was shown to increase with temperature in these cells. However, the temperature effect on KCCs remains largely unknown.FindingsHere, we determined the temperature effect on KCC2 and KCC4 transport activity in HEK-293 cells. Both transporters demonstrated significantly higher transport activity (2.5 fold for KCC2 and 3.3 fold for KCC4) after pre-incubation at room temperature compared to 37°C.ConclusionsThese data identify a reciprocal temperature dependence of cation chloride inward and outward cotransporters in HEK-293 cells. Thus, lower temperature should be used for functional characterization of KCC2 and KCC4 and higher temperatures for N(K)CCs in heterologous mammalian expression systems. Furthermore, if this reciprocal effect also applies to neurons, the action of inhibitory neurotransmitters might be more affected by changes in temperature than previously thought.


Scientific Reports | 2016

Molecular bases of K+ secretory cells in the inner ear: shared and distinct features between birds and mammals

Viviane Wilms; Christine Köppl; Chris Söffgen; Anna-Maria Hartmann; Hans Gerd Nothwang

In the cochlea, mammals maintain a uniquely high endolymphatic potential (EP), which is not observed in other vertebrate groups. However, a high [K+] is always present in the inner ear endolymph. Here, we show that Kir4.1, which is required in the mammalian stria vascularis to generate the highly positive EP, is absent in the functionally equivalent avian tegmentum vasculosum. In contrast, the molecular repertoire required for K+ secretion, specifically NKCC1, KCNQ1, KCNE1, BSND and CLC-K, is shared between the tegmentum vasculosum, the vestibular dark cells and the marginal cells of the stria vascularis. We further show that in barn owls, the tegmentum vasculosum is enlarged and a higher EP (~+34 mV) maintained, compared to other birds. Our data suggest that both the tegmentum vasculosum and the stratified stria vascularis evolved from an ancestral vestibular epithelium that already featured the major cell types of the auditory epithelia. Genetic recruitment of Kir4.1 specifically to strial melanocytes was then a crucial step in mammalian evolution enabling an increase in the cochlear EP. An increased EP may be related to high-frequency hearing, as this is a hallmark of barn owls among birds and mammals among amniotes.


Biochemical and Biophysical Research Communications | 2012

KCC2 transport activity requires the highly conserved L675 in the C-terminal β1 strand

Annika Döding; Anna-Maria Hartmann; Timo Beyer; Hans Gerd Nothwang

The activity of the neuron-specific K(+), Cl(-) co-transporter 2 (KCC2) is required for hyperpolarizing action of GABA and glycine. KCC2-mediated transport therefore plays a pivotal role in neuronal inhibition. Few analyses have addressed the amino acid requirements for transport-competent conformation. KCC2 consists of 12 transmembrane domains flanked by two intracellular termini. Structural analyses of a related archaeal protein have identified an evolutionary extremely conserved β1 strand, which links the transmembrane domain to a C-terminal dimerization interface. Here, we focused on the sequence requirement of this linker. We mutated four highly conserved amino acids of the β1 strand ((673)QLLV(676)) to alanine and analyzed the functional consequences in mammalian cells. Flux measurements demonstrated that L(675A) significantly reduced KCC2 transport activity by 41%, whereas the other three mutants displayed normal activity. Immunocytochemistry and cell surface labeling revealed normal trafficking of all four mutants. Altogether, our results identify L(675) as a critical residue for KCC2 transport activity. Furthermore, in view of its evolutionary conservation, the data suggest a remarkable tolerance of the KCC2 transport activity to amino acid substitutions in the β1 strand.

Collaboration


Dive into the Anna-Maria Hartmann's collaboration.

Top Co-Authors

Avatar

Hans Gerd Nothwang

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Eckhard Friauf

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Meike Wenz

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jens Schindler

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thorsten Kranz

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriana Mercado

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

David B. Mount

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge